Idea Generation using Transformer Decoder Models

Musammet Rafia Karim, Siam Shibly Antar, Mohammad Ashrafuzzaman Khan
{"title":"Idea Generation using Transformer Decoder Models","authors":"Musammet Rafia Karim, Siam Shibly Antar, Mohammad Ashrafuzzaman Khan","doi":"10.1145/3579654.3579706","DOIUrl":null,"url":null,"abstract":"Our work aims to generate new ideas to explore in a specific domain using generative language models. For example, doctors can write about known symptoms as cues to the system, and then the system will generate ideas based on the cues. Similar scenarios can be thought of for other scientific domains. We used transformer-based decoders, especially GPT3-based transformer decoders, as the language models and generators. As the data, we used COVID-19 open research dataset [18]. We finetuned GPT-NEO-125M and GPT-NEO-1.3B models with 125 million and 1.3 billion parameters, respectively. The later model generated more coherent text and could link ideas relevant to the same problem better. We report here our findings with examples generated from our finetuned models.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Our work aims to generate new ideas to explore in a specific domain using generative language models. For example, doctors can write about known symptoms as cues to the system, and then the system will generate ideas based on the cues. Similar scenarios can be thought of for other scientific domains. We used transformer-based decoders, especially GPT3-based transformer decoders, as the language models and generators. As the data, we used COVID-19 open research dataset [18]. We finetuned GPT-NEO-125M and GPT-NEO-1.3B models with 125 million and 1.3 billion parameters, respectively. The later model generated more coherent text and could link ideas relevant to the same problem better. We report here our findings with examples generated from our finetuned models.
使用变压器解码器模型产生想法
我们的工作旨在使用生成语言模型在特定领域产生新的想法来探索。例如,医生可以写下已知的症状,作为系统的线索,然后系统将根据这些线索产生想法。其他科学领域也可以设想类似的情景。我们使用基于变压器的解码器,特别是基于gpt3的变压器解码器,作为语言模型和生成器。作为数据,我们使用COVID-19开放研究数据集[18]。我们分别用1.25亿个和13亿个参数对GPT-NEO-125M和gpt - neo - 13 b模型进行了微调。后来的模型产生了更连贯的文本,可以更好地将与同一问题相关的想法联系起来。我们在这里报告了我们的发现,并使用了由我们的微调模型生成的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信