Automated Test Case Generation from Input Specification in Natural Language

Tianyu Li, Xiuwen Lu, Hui Xu
{"title":"Automated Test Case Generation from Input Specification in Natural Language","authors":"Tianyu Li, Xiuwen Lu, Hui Xu","doi":"10.1109/ISSREW55968.2022.00076","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of automated test case generation for online coding test, i.e., given an input specification in natural language, how can we generate test cases automatically to examine the correctness of the code implemented by the testee? To tackle the problem, this paper proposes an approach that first extracts noun phrases from an input specification; then it removes irrelevant noun phrases and only retains the key phrases related to input construction; by reorganizing these key phrases, it can form an information tree and generate test cases accordingly. We have evaluated our approach with two datasets from LeetCode and ACM and achieved promising results.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies the problem of automated test case generation for online coding test, i.e., given an input specification in natural language, how can we generate test cases automatically to examine the correctness of the code implemented by the testee? To tackle the problem, this paper proposes an approach that first extracts noun phrases from an input specification; then it removes irrelevant noun phrases and only retains the key phrases related to input construction; by reorganizing these key phrases, it can form an information tree and generate test cases accordingly. We have evaluated our approach with two datasets from LeetCode and ACM and achieved promising results.
用自然语言从输入规范中自动生成测试用例
本文研究了在线编码测试的自动测试用例生成问题,即,给定自然语言的输入规范,我们如何自动生成测试用例来检查被测试者实现的代码的正确性?为了解决这个问题,本文提出了一种首先从输入规范中提取名词短语的方法;然后删除无关的名词短语,只保留与输入结构相关的关键短语;通过重新组织这些关键短语,它可以形成一个信息树,并相应地生成测试用例。我们用来自LeetCode和ACM的两个数据集评估了我们的方法,并取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信