Evolutionary neural classification for evaluation of retail stores and decision support

R. Stahlbock, S. Crone
{"title":"Evolutionary neural classification for evaluation of retail stores and decision support","authors":"R. Stahlbock, S. Crone","doi":"10.1109/IJCNN.2005.1556098","DOIUrl":null,"url":null,"abstract":"The neural network paradigm of learning vector quantization (LVQ) and several enhancements of the standard algorithms have demonstrated improved predictive accuracy when applied to simple 'toy' problems. In this paper, we propose a novel approach of evolutionary optimized LVQ classification applied in real world business decision support. We predict the success of retail outlets of a multinational German company in terms of revenue and profit. The predictions are used to support investment decisions, establishing new stores or closing down existing ones with limited prospective profits. In addition, the predictions provide information to change in-store design or product lines of existing stores. The LVQ networks are trained on data reflecting the macroscopic socio-demographic infrastructure and microscopic in-store aspects of existing outlets. Results of numerous computational experiments in a parallelized PC network are compared with standard neural networks, demonstrating pre-eminent results of the novel method.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The neural network paradigm of learning vector quantization (LVQ) and several enhancements of the standard algorithms have demonstrated improved predictive accuracy when applied to simple 'toy' problems. In this paper, we propose a novel approach of evolutionary optimized LVQ classification applied in real world business decision support. We predict the success of retail outlets of a multinational German company in terms of revenue and profit. The predictions are used to support investment decisions, establishing new stores or closing down existing ones with limited prospective profits. In addition, the predictions provide information to change in-store design or product lines of existing stores. The LVQ networks are trained on data reflecting the macroscopic socio-demographic infrastructure and microscopic in-store aspects of existing outlets. Results of numerous computational experiments in a parallelized PC network are compared with standard neural networks, demonstrating pre-eminent results of the novel method.
基于进化神经分类的零售商店评价与决策支持
学习向量量化(LVQ)的神经网络范式和几种标准算法的增强已经证明,当应用于简单的“玩具”问题时,预测精度有所提高。本文提出了一种应用于实际业务决策支持的进化优化LVQ分类方法。我们预测一家德国跨国公司零售店在收入和利润方面的成功。这些预测用于支持投资决策,建立新店或关闭预期利润有限的现有店。此外,这些预测还为改变现有商店的店内设计或产品线提供了信息。LVQ网络是根据反映宏观社会人口基础设施和现有门店微观店内方面的数据进行培训的。将并行PC网络的大量计算实验结果与标准神经网络进行了比较,证明了新方法的卓越效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信