ESTIMATION OF AUSTRALIA’S OUTBOUND AIRLINE PASSENGER DEMAND USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

P. Srisaeng, Glenn Baxter
{"title":"ESTIMATION OF AUSTRALIA’S OUTBOUND AIRLINE PASSENGER DEMAND USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM","authors":"P. Srisaeng, Glenn Baxter","doi":"10.7708/ijtte.2021.11(3).10","DOIUrl":null,"url":null,"abstract":": This study has proposed and empirically tested an adaptive neuro-fuzzy inference system (ANFIS) model for predicting Australia’s outbound international airline passenger demand. The model was developed using eleven input parameters of world GDP, world population, world air fare yields, world jet fuel prices, outbound flights from Australia, Australia’s unemployment numbers, Australian’s (AUD/USD) foreign exchange rate, Australia’s outbound tourist expenditure and four dummy variables. The model was constructed using annual data from 1994 to 2019. The hybrid learning algorithm and the subtractive clustering partition method were used to generate the optimum ANFIS models. The performance of the model was measured using five error measures: coefficient of determination (R2-value), root mean square errors (RMSE), mean absolute errors (MAE) and the mean absolute percentage error (MAPE). The results found that the mean absolute percentage error (MAPE) for the overall data set of the model was 3.60%. The R2-value was around 0.9886, demonstrating that the ANFIS is an efficient model for predicting Australia’s outbound airline passenger demand.","PeriodicalId":117687,"journal":{"name":"International Journal for Traffic and Transport Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Traffic and Transport Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7708/ijtte.2021.11(3).10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

: This study has proposed and empirically tested an adaptive neuro-fuzzy inference system (ANFIS) model for predicting Australia’s outbound international airline passenger demand. The model was developed using eleven input parameters of world GDP, world population, world air fare yields, world jet fuel prices, outbound flights from Australia, Australia’s unemployment numbers, Australian’s (AUD/USD) foreign exchange rate, Australia’s outbound tourist expenditure and four dummy variables. The model was constructed using annual data from 1994 to 2019. The hybrid learning algorithm and the subtractive clustering partition method were used to generate the optimum ANFIS models. The performance of the model was measured using five error measures: coefficient of determination (R2-value), root mean square errors (RMSE), mean absolute errors (MAE) and the mean absolute percentage error (MAPE). The results found that the mean absolute percentage error (MAPE) for the overall data set of the model was 3.60%. The R2-value was around 0.9886, demonstrating that the ANFIS is an efficient model for predicting Australia’s outbound airline passenger demand.
使用自适应神经模糊推理系统估计澳大利亚出境航空旅客需求
本研究提出并实证检验了自适应神经模糊推理系统(ANFIS)模型对澳大利亚出境国际航空旅客需求的预测。该模型使用了11个输入参数,包括世界GDP、世界人口、世界机票收益率、世界喷气燃料价格、澳大利亚出境航班、澳大利亚失业人数、澳大利亚(澳元/美元)汇率、澳大利亚出境旅游支出和4个虚拟变量。该模型是使用1994年至2019年的年度数据构建的。采用混合学习算法和减法聚类划分方法生成最优的ANFIS模型。模型的性能通过5个误差指标来衡量:决定系数(r2值)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。结果发现,该模型整体数据集的平均绝对百分比误差(MAPE)为3.60%。r2值约为0.9886,表明ANFIS是预测澳大利亚出境航空旅客需求的有效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信