An Energy-Efficient Deep Neural Network Training Processor with Bit-Slice-Level Reconfigurability and Sparsity Exploitation

Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, H. Yoo
{"title":"An Energy-Efficient Deep Neural Network Training Processor with Bit-Slice-Level Reconfigurability and Sparsity Exploitation","authors":"Donghyeon Han, Dongseok Im, Gwangtae Park, Youngwoo Kim, Seokchan Song, Juhyoung Lee, H. Yoo","doi":"10.1109/COOLCHIPS52128.2021.9410324","DOIUrl":null,"url":null,"abstract":"This paper presents an energy-efficient deep neural network (DNN) training processor through the four key features: 1) Layer-wise Adaptive bit-Precision Scaling (LAPS) with 2) In-Out Slice Skipping (IOSS) core, 3) double-buffered Reconfigurable Accumulation Network (RAN), 4) momentum-ADAM unified OPTimizer Core (OPTC). Thanks to the bit-slice-level scalability and zero-slice skipping, it shows 5.9 x higher energy-efficiency compared with the state-of-the-art on-chip-learning processor (OCLPs).","PeriodicalId":103337,"journal":{"name":"2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COOLCHIPS52128.2021.9410324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an energy-efficient deep neural network (DNN) training processor through the four key features: 1) Layer-wise Adaptive bit-Precision Scaling (LAPS) with 2) In-Out Slice Skipping (IOSS) core, 3) double-buffered Reconfigurable Accumulation Network (RAN), 4) momentum-ADAM unified OPTimizer Core (OPTC). Thanks to the bit-slice-level scalability and zero-slice skipping, it shows 5.9 x higher energy-efficiency compared with the state-of-the-art on-chip-learning processor (OCLPs).
具有位片级可重构性和稀疏性的高效深度神经网络训练处理器
本文提出了一种节能的深度神经网络(DNN)训练处理器,该处理器具有四个关键特征:1)分层自适应位精度缩放(LAPS), 2)输入-输出切片跳变(IOSS)核心,3)双缓冲可重构积累网络(RAN), 4)动量- adam统一优化器核心(OPTC)。由于比特片级的可扩展性和零片跳变,与最先进的片上学习处理器(oclp)相比,它的能效提高了5.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信