Compressed sensing for face recognition

N. Vo, D. Vo, S. Challa, W. Moran
{"title":"Compressed sensing for face recognition","authors":"N. Vo, D. Vo, S. Challa, W. Moran","doi":"10.1109/CIIP.2009.4937888","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach to build a more robust and efficient face recognition system. The idea is to fit the face recognition task into the new mathematical theory and algorithm of compressed sensing framework. With its beautiful theoretical results from compressed sensing, the new face recognition framework stably gives a better performance with some advantages compared to traditional approaches. Experimental results show the promising aspects of new approach when comparing with the most popular subspace analysis approaches in face recognition such as Eigenfaces, Fisherfaces, and Laplacianfaces in terms of recognition accuracy, efficiency, and numerical stability.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we present a new approach to build a more robust and efficient face recognition system. The idea is to fit the face recognition task into the new mathematical theory and algorithm of compressed sensing framework. With its beautiful theoretical results from compressed sensing, the new face recognition framework stably gives a better performance with some advantages compared to traditional approaches. Experimental results show the promising aspects of new approach when comparing with the most popular subspace analysis approaches in face recognition such as Eigenfaces, Fisherfaces, and Laplacianfaces in terms of recognition accuracy, efficiency, and numerical stability.
压缩感知用于人脸识别
在本文中,我们提出了一种新的方法来构建一个更鲁棒和高效的人脸识别系统。其思想是将人脸识别任务融入到压缩感知框架的新的数学理论和算法中。与传统的人脸识别方法相比,新的人脸识别框架具有一定的优势,并稳定地提供了更好的性能。实验结果表明,该方法在识别精度、效率和数值稳定性等方面与人脸识别中最常用的子空间分析方法(Eigenfaces、Fisherfaces和Laplacianfaces)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信