Using Gradient Methods to Predict Twitter Users' Mental Health with Both COVID-19 Growth Patterns and Tweets

Sudha Tushara Sadasivuni, Yanqing Zhang
{"title":"Using Gradient Methods to Predict Twitter Users' Mental Health with Both COVID-19 Growth Patterns and Tweets","authors":"Sudha Tushara Sadasivuni, Yanqing Zhang","doi":"10.1109/HCCAI49649.2020.00017","DOIUrl":null,"url":null,"abstract":"Twitter users post tweets to express their feelings, emotions, and behavior. During COVID-19 times, people moved to varied life routines. Such a change in daily life affected people's mental health. We studied the mental health of twitter users during this time through their tweets and compared them with the COVID-19 growth pattern. We also attempted to forecast the depressive tweets and compared them with real data using ARIMA methods. We found our observations of tweets and COVID-19 Epidemic reports of WHO followed a similar pattern. Our forecast findings with ARIMA methods supported the real data.","PeriodicalId":444855,"journal":{"name":"2020 IEEE International Conference on Humanized Computing and Communication with Artificial Intelligence (HCCAI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Humanized Computing and Communication with Artificial Intelligence (HCCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCCAI49649.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Twitter users post tweets to express their feelings, emotions, and behavior. During COVID-19 times, people moved to varied life routines. Such a change in daily life affected people's mental health. We studied the mental health of twitter users during this time through their tweets and compared them with the COVID-19 growth pattern. We also attempted to forecast the depressive tweets and compared them with real data using ARIMA methods. We found our observations of tweets and COVID-19 Epidemic reports of WHO followed a similar pattern. Our forecast findings with ARIMA methods supported the real data.
使用梯度方法预测推特用户的心理健康,包括COVID-19的增长模式和推文
推特用户发布推特来表达他们的感受、情绪和行为。在2019冠状病毒病期间,人们的生活习惯发生了变化。这种日常生活的变化影响了人们的心理健康。我们通过推特用户在这段时间内的推文研究了他们的心理健康状况,并将其与COVID-19的增长模式进行了比较。我们还尝试预测抑郁推文,并使用ARIMA方法将其与真实数据进行比较。我们发现,我们对推特的观察和世卫组织的COVID-19疫情报告也遵循类似的模式。我们使用ARIMA方法的预测结果支持实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信