Existence of an infinite ternary 64-abelian square-free word

M. Huova
{"title":"Existence of an infinite ternary 64-abelian square-free word","authors":"M. Huova","doi":"10.1051/ita/2014012","DOIUrl":null,"url":null,"abstract":"We consider a recently defined notion of k -abelian equivalence of words by\n concentrating on avoidance problems. The equivalence class of a word depends on the\n numbers of occurrences of different factors of length k for a fixed natural\n number k and\n the prefix of the word. We have shown earlier that over a ternary alphabet k -abelian squares cannot be\n avoided in pure morphic words for any natural number k . Nevertheless,\n computational experiments support the conjecture that even 3-abelian squares can be\n avoided over ternary alphabets. In this paper we establish the first avoidance result\n showing that by choosing k to be large enough we have an infinite\n k -abelian\n square-free word over three letter alphabet. In addition, this word can be obtained as a\n morphic image of a pure morphic word.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2014012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider a recently defined notion of k -abelian equivalence of words by concentrating on avoidance problems. The equivalence class of a word depends on the numbers of occurrences of different factors of length k for a fixed natural number k and the prefix of the word. We have shown earlier that over a ternary alphabet k -abelian squares cannot be avoided in pure morphic words for any natural number k . Nevertheless, computational experiments support the conjecture that even 3-abelian squares can be avoided over ternary alphabets. In this paper we establish the first avoidance result showing that by choosing k to be large enough we have an infinite k -abelian square-free word over three letter alphabet. In addition, this word can be obtained as a morphic image of a pure morphic word.
无限三进制64-阿贝尔无平方字的存在性
我们通过集中讨论回避问题来考虑最近定义的单词的k -阿贝尔等价的概念。一个词的等价类取决于一个固定自然数k的不同长度因子k的出现次数和这个词的前缀。我们已经证明在一个三元字母表k上,对于任何自然数k,在纯态词中都不能避免阿贝尔平方。然而,计算实验支持这样的猜想,即即使是3-阿贝尔平方也可以避免使用三元字母表。在本文中,我们建立了第一个回避结果,表明通过选择k足够大,我们可以在三个字母的字母表中得到一个无限的无k阿贝尔平方词。此外,这个词可以作为一个纯词形词的词形象得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信