{"title":"Stable Cores in Information Graph Games","authors":"Marina Núñez, J. Vidal-Puga","doi":"10.2139/ssrn.3733420","DOIUrl":null,"url":null,"abstract":"In an information graph situation, some agents that are connected by an undirected graph can share with no cost some information or technology that can also be obtained from a source. If an agent is not connected to an informed player, this agent pays a unitary cost to obtain this technology. A coalitional cost game can be defined from this situation, and the core of this game is known to be non- empty. We prove that the core of an information graph game is a von Neumann-Morgenstern stable set if and only if the graph is cycle- complete, or equivalently if the information graph game is concave. When the graph is not cycle-complete, whether there always exists a stable set is an open question. In this regard, we show that if the information graph consists of a ring that contains the source, then a stable set always exists and it is the core of a related information graph situation where one edge has been deleted.","PeriodicalId":288317,"journal":{"name":"International Political Economy: Globalization eJournal","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Political Economy: Globalization eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3733420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In an information graph situation, some agents that are connected by an undirected graph can share with no cost some information or technology that can also be obtained from a source. If an agent is not connected to an informed player, this agent pays a unitary cost to obtain this technology. A coalitional cost game can be defined from this situation, and the core of this game is known to be non- empty. We prove that the core of an information graph game is a von Neumann-Morgenstern stable set if and only if the graph is cycle- complete, or equivalently if the information graph game is concave. When the graph is not cycle-complete, whether there always exists a stable set is an open question. In this regard, we show that if the information graph consists of a ring that contains the source, then a stable set always exists and it is the core of a related information graph situation where one edge has been deleted.