Enforced Isolation Deep Network For Anomaly Detection In Images

Demetris Lappas, Vasileios Argyriou, Dimitrios Makris
{"title":"Enforced Isolation Deep Network For Anomaly Detection In Images","authors":"Demetris Lappas, Vasileios Argyriou, Dimitrios Makris","doi":"10.1049/icp.2021.1441","DOIUrl":null,"url":null,"abstract":"Challenges in anomaly detection include the implicit definition of anomaly, benchmarking against human intuition and scarcity of anomalous examples. We introduce a novel approach designed to enforce separation of normal and abnormal samples in an embedded space using a refined Triple Loss Function, within the paradigm of Deep Networks. Training is based on randomly sampled triplets to manage datasets with small proportion of anomalous data. Results for a range of proportions between normal and anomalous data are presented on the MNIST, CIFAR10 and Concrete Cracks datasets and compared against the current state of the art.","PeriodicalId":431144,"journal":{"name":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges in anomaly detection include the implicit definition of anomaly, benchmarking against human intuition and scarcity of anomalous examples. We introduce a novel approach designed to enforce separation of normal and abnormal samples in an embedded space using a refined Triple Loss Function, within the paradigm of Deep Networks. Training is based on randomly sampled triplets to manage datasets with small proportion of anomalous data. Results for a range of proportions between normal and anomalous data are presented on the MNIST, CIFAR10 and Concrete Cracks datasets and compared against the current state of the art.
用于图像异常检测的强制隔离深度网络
异常检测面临的挑战包括异常的隐式定义、基于人类直觉的基准测试和异常示例的稀缺性。我们在深度网络的范例中引入了一种新的方法,旨在使用改进的三重损失函数在嵌入空间中强制分离正常和异常样本。训练是基于随机抽样的三元组来管理具有小比例异常数据的数据集。在MNIST, CIFAR10和混凝土裂缝数据集上给出了正常和异常数据之间比例范围的结果,并与当前的技术状态进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信