A New Glowworm Swarm Optimization Based Clustering Algorithm for Multimedia Documents

K. Pushpalatha, S. AnanthanarayanaV.
{"title":"A New Glowworm Swarm Optimization Based Clustering Algorithm for Multimedia Documents","authors":"K. Pushpalatha, S. AnanthanarayanaV.","doi":"10.1109/ISM.2015.94","DOIUrl":null,"url":null,"abstract":"Due to the explosion of multimedia data, the demand for the sophisticated multimedia knowledge discovery systems has been increased. The multimodal nature of multimedia data is the big barrier for knowledge extraction. The representation of multimodal data in a unimodal space will be more advantageous for any mining task. We initially represent the multimodal multimedia documents in a unimodal space by converting the multimedia objects into signal objects. The dynamic nature of the glowworms motivated us to propose the Glowworm Swarm Optimization based Multimedia Document Clustering (GSOMDC) algorithm to group the multimedia documents into topics. The better purity and entropy values indicates that the GSOMDC algorithm successfully clusters the multimedia documents into topics. The goodness of the clustering is evaluated by performing the cluster based retrieval of multimedia documents with better precision values.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Due to the explosion of multimedia data, the demand for the sophisticated multimedia knowledge discovery systems has been increased. The multimodal nature of multimedia data is the big barrier for knowledge extraction. The representation of multimodal data in a unimodal space will be more advantageous for any mining task. We initially represent the multimodal multimedia documents in a unimodal space by converting the multimedia objects into signal objects. The dynamic nature of the glowworms motivated us to propose the Glowworm Swarm Optimization based Multimedia Document Clustering (GSOMDC) algorithm to group the multimedia documents into topics. The better purity and entropy values indicates that the GSOMDC algorithm successfully clusters the multimedia documents into topics. The goodness of the clustering is evaluated by performing the cluster based retrieval of multimedia documents with better precision values.
基于萤火虫群优化的多媒体文档聚类新算法
由于多媒体数据的爆炸式增长,对复杂的多媒体知识发现系统的需求不断增加。多媒体数据的多模态特性是知识抽取的一大障碍。在单模态空间中表示多模态数据对任何挖掘任务都更有利。我们首先通过将多媒体对象转换为信号对象来表示单峰空间中的多模态多媒体文档。基于萤火虫的动态特性,我们提出了基于萤火虫群优化的多媒体文档聚类算法(GSOMDC),对多媒体文档进行主题分组。较好的纯度和熵值表明GSOMDC算法成功地将多媒体文档聚类成主题。通过对具有较好精度值的多媒体文档进行基于聚类的检索来评估聚类的优劣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信