{"title":"A PRG for Boolean PTF of Degree 2 with Seed Length Subpolynomial in epsilon and Logarithmic in n","authors":"D. Kane, Sankeerth Rao","doi":"10.4230/LIPIcs.CCC.2018.2","DOIUrl":null,"url":null,"abstract":"We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].