A PRG for Boolean PTF of Degree 2 with Seed Length Subpolynomial in epsilon and Logarithmic in n

D. Kane, Sankeerth Rao
{"title":"A PRG for Boolean PTF of Degree 2 with Seed Length Subpolynomial in epsilon and Logarithmic in n","authors":"D. Kane, Sankeerth Rao","doi":"10.4230/LIPIcs.CCC.2018.2","DOIUrl":null,"url":null,"abstract":"We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].
2次布尔PTF的PRG,种子长度为次多项式,n为对数
构造并分析了二阶布尔多项式阈值函数的伪随机生成器。随机构造实现了[EQUATION]的最佳种子长度,然而最著名的[8]显式构造使用的种子长度为O(log n·λ−8)。在这项工作中,我们给出了一个使用[EQUATION]种子长度的显式构造。请注意,这大大提高了种子长度,并且对误差的依赖是加性的,并且只以次多项式的方式增长,而不是之前已知的乘法多项式依赖。我们的生成器在Lu, Kabanets[18]给出的基于Nisan-Wigderson的伪随机生成器上使用降维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信