Part Based Recognition of Pedestrians Using Multiple Features and Random Forests

Gladis John, G. West, M. Lazarescu
{"title":"Part Based Recognition of Pedestrians Using Multiple Features and Random Forests","authors":"Gladis John, G. West, M. Lazarescu","doi":"10.1109/DICTA.2010.68","DOIUrl":null,"url":null,"abstract":"This paper explores a discriminative part-based approach for recognising people in video. It uses many regions to model the background and foreground and a random forest for classification. The objective is to overcome the limitations of more holistic approaches that try to recognise people as a single region with the consequential need to segment each person as one representation. Attributes of each blob, their relationships and variation over video frames are argued to be useful features for discrimination. In this paper the attributes of each blob are considered as a first step in the recognition process. We evaluate our approach through a comparison of three state of the art classifiers: Bagging, Adaboost and a Multilayer Perceptron (MLP), with the Random Forest (RF) using 10 fold cross validation. A detailed statistical analysis shows that the random forest classifier is more accurate compared to the other methods in terms of discrimination between regions describing people and those of the background.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a discriminative part-based approach for recognising people in video. It uses many regions to model the background and foreground and a random forest for classification. The objective is to overcome the limitations of more holistic approaches that try to recognise people as a single region with the consequential need to segment each person as one representation. Attributes of each blob, their relationships and variation over video frames are argued to be useful features for discrimination. In this paper the attributes of each blob are considered as a first step in the recognition process. We evaluate our approach through a comparison of three state of the art classifiers: Bagging, Adaboost and a Multilayer Perceptron (MLP), with the Random Forest (RF) using 10 fold cross validation. A detailed statistical analysis shows that the random forest classifier is more accurate compared to the other methods in terms of discrimination between regions describing people and those of the background.
基于多特征和随机森林的行人局部识别
本文探讨了一种基于部分识别的视频人物识别方法。它使用多个区域对背景和前景进行建模,并使用随机森林进行分类。目标是克服更全面的方法的局限性,这些方法试图将人们视为一个单一的区域,因此需要将每个人划分为一个代表。每个blob的属性,它们在视频帧中的关系和变化被认为是有用的识别特征。本文将每个blob的属性作为识别过程的第一步。我们通过比较三种最先进的分类器来评估我们的方法:Bagging、Adaboost和多层感知器(MLP),以及使用10倍交叉验证的随机森林(RF)。详细的统计分析表明,随机森林分类器在区分描述人的区域和背景的区域方面比其他方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信