SHOE: A SPARQL Query Engine Using MapReduce

Wenhai Li, Biren Chen, Ruijiang Yao, Yunpeng Li, Weidong Wen, C. Cheung, Wanghong Li
{"title":"SHOE: A SPARQL Query Engine Using MapReduce","authors":"Wenhai Li, Biren Chen, Ruijiang Yao, Yunpeng Li, Weidong Wen, C. Cheung, Wanghong Li","doi":"10.1109/ICPADS.2013.78","DOIUrl":null,"url":null,"abstract":"As the reasoning aspects and the knowledge based processing capabilities of RDF (Resource Description Framework) have been widely adopted in W3C Recommendation, the ontology layer and query languages of the Semantic Web stack achieve a certain level of maturity. There exists an increasing need for high performance, read-only semantic analysis for the massive RDF data. In this demo we will present a Map-Reduce based SPARQL processing engine, called SHOE (SPARQL on Hadoop with Optimization Encoding), to handle billions of RDF triples. SHOE consists of three major components (1) the RDF data loader, (2) the partition generator and (3) the query processor. While this demonstration mainly focuses on enhancing SPARQL processing in the Hadoop platform, the underlying encoding and partitioning optimization strategies can be utilized by the common Map-Reduce frameworks in the share-nothing environment.","PeriodicalId":160979,"journal":{"name":"2013 International Conference on Parallel and Distributed Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2013.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the reasoning aspects and the knowledge based processing capabilities of RDF (Resource Description Framework) have been widely adopted in W3C Recommendation, the ontology layer and query languages of the Semantic Web stack achieve a certain level of maturity. There exists an increasing need for high performance, read-only semantic analysis for the massive RDF data. In this demo we will present a Map-Reduce based SPARQL processing engine, called SHOE (SPARQL on Hadoop with Optimization Encoding), to handle billions of RDF triples. SHOE consists of three major components (1) the RDF data loader, (2) the partition generator and (3) the query processor. While this demonstration mainly focuses on enhancing SPARQL processing in the Hadoop platform, the underlying encoding and partitioning optimization strategies can be utilized by the common Map-Reduce frameworks in the share-nothing environment.
使用MapReduce的SPARQL查询引擎
随着RDF (Resource Description Framework,资源描述框架)的推理方面和基于知识的处理能力在W3C推荐标准中被广泛采用,语义Web栈的本体层和查询语言达到了一定的成熟度。对海量RDF数据的高性能、只读语义分析的需求越来越大。在这个演示中,我们将展示一个基于Map-Reduce的SPARQL处理引擎,称为SHOE (Hadoop上的SPARQL with Optimization Encoding),用于处理数十亿个RDF三元组。SHOE由三个主要组件组成(1)RDF数据加载器,(2)分区生成器和(3)查询处理器。虽然这个演示主要关注于增强Hadoop平台中的SPARQL处理,但是底层的编码和分区优化策略可以被无共享环境中的通用Map-Reduce框架所利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信