Development of Encoder-Decoder Predicting Search Process of Level-set Method in Magnetic Circuit Design

Ryota Kawamata, S. Wakao, N. Murata, Y. Okamoto
{"title":"Development of Encoder-Decoder Predicting Search Process of Level-set Method in Magnetic Circuit Design","authors":"Ryota Kawamata, S. Wakao, N. Murata, Y. Okamoto","doi":"10.1109/COMPUMAG45669.2019.9032835","DOIUrl":null,"url":null,"abstract":"The finite element analysis (FEA) of magnetic field generally requires a lot of calculation time. Especially, design optimization methods such as the level-set method with FEA result in large computational effort to find better solution. In this paper, we propose a novel method of precisely and quickly reproducing the conventional optimization steps by means of Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM). The developed method enables us to implement high speed search of solution, which means the possibility of effective optimization with various initial conditions for better solution. Finally, we evaluate calculation time and computational accuracy of the proposed method by using a magnetic circuit design model.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The finite element analysis (FEA) of magnetic field generally requires a lot of calculation time. Especially, design optimization methods such as the level-set method with FEA result in large computational effort to find better solution. In this paper, we propose a novel method of precisely and quickly reproducing the conventional optimization steps by means of Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM). The developed method enables us to implement high speed search of solution, which means the possibility of effective optimization with various initial conditions for better solution. Finally, we evaluate calculation time and computational accuracy of the proposed method by using a magnetic circuit design model.
磁路设计中水平集法编码器-解码器预测搜索过程的开发
磁场的有限元分析通常需要大量的计算时间。特别是设计优化方法,如水平集法和有限元分析,需要大量的计算量才能找到更好的解。本文提出了一种利用卷积神经网络(CNN)和长短期记忆(LSTM)精确、快速地再现传统优化步骤的新方法。所开发的方法使我们能够实现求解的高速搜索,这意味着可以在各种初始条件下进行有效的优化以获得更好的解。最后,利用一个磁路设计模型对所提方法的计算时间和计算精度进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信