Hardware-oriented succinct-data-structure based on block-size-constrained compression

H. M. Waidyasooriya, Daisuke Ono, M. Hariyama
{"title":"Hardware-oriented succinct-data-structure based on block-size-constrained compression","authors":"H. M. Waidyasooriya, Daisuke Ono, M. Hariyama","doi":"10.1109/SOCPAR.2015.7492797","DOIUrl":null,"url":null,"abstract":"Succinct data structures are introduced to efficiently solve a given problem while representing the data using as little space as possible. However, the full potential of the succinct data structures have not been utilized in software-based implementations due to the large storage size and the memory access bottleneck. This paper proposes a hardware-oriented data compression method to reduce the storage space without increasing the processing time. We use a parallel processing architecture to reduce the decompression overhead. According to the evaluation, we can compress the data by 37.5% and still have fast data access with small decompression overhead.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Succinct data structures are introduced to efficiently solve a given problem while representing the data using as little space as possible. However, the full potential of the succinct data structures have not been utilized in software-based implementations due to the large storage size and the memory access bottleneck. This paper proposes a hardware-oriented data compression method to reduce the storage space without increasing the processing time. We use a parallel processing architecture to reduce the decompression overhead. According to the evaluation, we can compress the data by 37.5% and still have fast data access with small decompression overhead.
基于块大小约束压缩的面向硬件的简洁数据结构
引入简洁的数据结构来有效地解决给定的问题,同时使用尽可能少的空间表示数据。然而,由于存储容量大和内存访问瓶颈,简洁数据结构的全部潜力在基于软件的实现中没有得到充分利用。在不增加数据处理时间的前提下,提出了一种面向硬件的数据压缩方法。我们使用并行处理架构来减少解压缩开销。根据评估,我们可以压缩37.5%的数据,并且仍然具有快速的数据访问和较小的解压开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信