{"title":"Impact of emerging quantum information technologies (QIT) on information fusion: panel summary (Conference Presentation)","authors":"Erik Blasch, B. Balaji, I. Kadar","doi":"10.1117/12.2305578","DOIUrl":null,"url":null,"abstract":"Quantum physics has a growing influence on sensor technology; particularly, in the areas of quantum computer science, quantum communications, and quantum sensing based on recent insights from atomic, molecular and optical physics. These quantum contributions have the potential to impact information fusion techniques. Quantum information technology (QIT) methods of interest suggest benefits for information fusion, so a panel was organized to articulate methods of importance for the community. The panel discussion presented many ideas from which the leading impact for information fusion is directly related to the sub-Rayleigh sensing that reduces uncertainty for object assessment through enhanced resolution. The second areas of importance is in the cyber security of data that supports data, sensor, and information fusion. Some elements of QIT that require further analysis is in quantum computing for which only a limited set of information fusion techniques can harness the methods associated with quantum computer architectures. The panel reviewed various aspects of QIT for information fusion which provides a foundation to identify future alignment between quantum and information fusion techniques.","PeriodicalId":115861,"journal":{"name":"Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2305578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum physics has a growing influence on sensor technology; particularly, in the areas of quantum computer science, quantum communications, and quantum sensing based on recent insights from atomic, molecular and optical physics. These quantum contributions have the potential to impact information fusion techniques. Quantum information technology (QIT) methods of interest suggest benefits for information fusion, so a panel was organized to articulate methods of importance for the community. The panel discussion presented many ideas from which the leading impact for information fusion is directly related to the sub-Rayleigh sensing that reduces uncertainty for object assessment through enhanced resolution. The second areas of importance is in the cyber security of data that supports data, sensor, and information fusion. Some elements of QIT that require further analysis is in quantum computing for which only a limited set of information fusion techniques can harness the methods associated with quantum computer architectures. The panel reviewed various aspects of QIT for information fusion which provides a foundation to identify future alignment between quantum and information fusion techniques.