Classification of IoT Malware based on Convolutional Neural Network

Qian-Guang Lin, Ni Li, Q. Qi, Jia-Bin Hu
{"title":"Classification of IoT Malware based on Convolutional Neural Network","authors":"Qian-Guang Lin, Ni Li, Q. Qi, Jia-Bin Hu","doi":"10.1109/ICSS50103.2020.00016","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for the malware classification problem in the IoT domain. Application executions are represented by sequences of consecutive API calls. The time series of data are analyzed and filtered based on information gains, which reduce sequence lengths while keeping important information. We use convolutional neural networks to classify various types of malwares. The experimental results on real world IoT malware samples show that this approach has a faster and more accurate classification rate than the recurrent neural networks and some other machine learning classification algorithms.","PeriodicalId":292795,"journal":{"name":"2020 International Conference on Service Science (ICSS)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Service Science (ICSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS50103.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an algorithm for the malware classification problem in the IoT domain. Application executions are represented by sequences of consecutive API calls. The time series of data are analyzed and filtered based on information gains, which reduce sequence lengths while keeping important information. We use convolutional neural networks to classify various types of malwares. The experimental results on real world IoT malware samples show that this approach has a faster and more accurate classification rate than the recurrent neural networks and some other machine learning classification algorithms.
基于卷积神经网络的物联网恶意软件分类
本文提出了一种针对物联网领域恶意软件分类问题的算法。应用程序的执行由连续的API调用序列表示。基于信息增益对时间序列数据进行分析和过滤,在保留重要信息的同时减少了序列长度。我们使用卷积神经网络对各种类型的恶意软件进行分类。在真实物联网恶意软件样本上的实验结果表明,该方法比递归神经网络和其他一些机器学习分类算法具有更快、更准确的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信