Optimally regularised kernel Fisher discriminant analysis

Kamel Saadi, N. L. C. Talbot, G. Cawley
{"title":"Optimally regularised kernel Fisher discriminant analysis","authors":"Kamel Saadi, N. L. C. Talbot, G. Cawley","doi":"10.1109/ICPR.2004.1334245","DOIUrl":null,"url":null,"abstract":"Mika et al. (1999) introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar \"kernel trick\", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(/spl lscr//sup 2/) operations, where /spl lscr/ is the number of training patterns, rather than the O(/spl lscr//sup 4/) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient hierarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Mika et al. (1999) introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar "kernel trick", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(/spl lscr//sup 2/) operations, where /spl lscr/ is the number of training patterns, rather than the O(/spl lscr//sup 4/) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient hierarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.
最优正则化核Fisher判别分析
Mika等人(1999)基于现在熟悉的“核技巧”,引入了Fisher线性判别式的非线性公式,在广泛的现实世界基准数据集上展示了最先进的性能。在本文中,我们证明了通常的正则化参数可以调整,以最小化留一交叉验证误差,计算复杂性仅为O(/spl lscr//sup 2/)操作,其中/spl lscr/是训练模式的数量,而不是O(/spl lscr//sup 4/)操作,这是简单实现留一过程所需的。然后,该过程用于形成有效的分层模型选择策略的组成部分,其中正则化参数在内循环中优化,而内核参数在外循环中优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信