Interactive Hashtag Recommendation System

Chun-Ting Lin, Tsai-Yen Li
{"title":"Interactive Hashtag Recommendation System","authors":"Chun-Ting Lin, Tsai-Yen Li","doi":"10.1109/TAAI57707.2022.00038","DOIUrl":null,"url":null,"abstract":"With the progressive advance of Internet technologies, more and more users share their lives by posting tweets on social media platforms like Twitter. These tweets use hashtags as links to constitute discussion topics on social media. However, since most users are not used to using hashtags, a large number of tweets cannot be related to corresponding topics. To solve this problem, we propose an interactive hashtag recommendation system, which predicts the topic of an input tweet and interactively recommends relevant hashtags in different phases of writing tweets. When users use recommended hashtags, the input tweet can be related to the corresponding topic by using hashtags. Tweets on social media can form many discussion topics through hashtags. As such, the system can help to build consensus about hashtags on social media. We conducted user experiments to verify the usability of the implemented recommendation system. The experimental results and user feedback reveal that this interactive hashtag recommendation system can provide accurate hashtags relevant to the corresponding topic.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the progressive advance of Internet technologies, more and more users share their lives by posting tweets on social media platforms like Twitter. These tweets use hashtags as links to constitute discussion topics on social media. However, since most users are not used to using hashtags, a large number of tweets cannot be related to corresponding topics. To solve this problem, we propose an interactive hashtag recommendation system, which predicts the topic of an input tweet and interactively recommends relevant hashtags in different phases of writing tweets. When users use recommended hashtags, the input tweet can be related to the corresponding topic by using hashtags. Tweets on social media can form many discussion topics through hashtags. As such, the system can help to build consensus about hashtags on social media. We conducted user experiments to verify the usability of the implemented recommendation system. The experimental results and user feedback reveal that this interactive hashtag recommendation system can provide accurate hashtags relevant to the corresponding topic.
交互式标签推荐系统
随着互联网技术的不断进步,越来越多的用户通过在Twitter等社交媒体平台上发布tweet来分享他们的生活。这些推文使用标签作为链接,构成社交媒体上的讨论话题。然而,由于大多数用户不习惯使用标签,大量的推文无法与相应的主题关联。为了解决这一问题,我们提出了一种交互式标签推荐系统,该系统可以预测输入推文的主题,并在推文写作的不同阶段交互式推荐相关的标签。当用户使用推荐标签时,可以使用标签将输入的推文与相应的主题关联起来。社交媒体上的推文可以通过标签形成许多讨论话题。因此,该系统可以帮助人们就社交媒体上的话题标签达成共识。我们进行了用户实验来验证所实现推荐系统的可用性。实验结果和用户反馈表明,该交互式标签推荐系统能够提供与相应主题相关的准确标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信