Chemical Reaction Optimization (CRO) of Deep Neural Network (DNN) Model for Characterization of Algae Drying Kinetics

Amir A. Bracino, D. G. Evangelista, A. Mayol, Ronnie S. Concepcion, A. Culaba, E. Dadios, C. Madrazo, A. Ubando, R. R. Vicerra
{"title":"Chemical Reaction Optimization (CRO) of Deep Neural Network (DNN) Model for Characterization of Algae Drying Kinetics","authors":"Amir A. Bracino, D. G. Evangelista, A. Mayol, Ronnie S. Concepcion, A. Culaba, E. Dadios, C. Madrazo, A. Ubando, R. R. Vicerra","doi":"10.1109/HNICEM54116.2021.9731859","DOIUrl":null,"url":null,"abstract":"Drying is an essential step needed to improve the extraction of lipids and other valuable compounds in the algae for biodiesel production. However, there is a limited amount of information available regarding its drying kinetics. Previous studies have used computational intelligence e.g., artificial neural networks (ANN) and deep neural networks (DNN) to characterize the drying kinetics of algae. Chemical Reaction optimization (CRO), a recently introduced metaheuristic optimization approach, is employed in this study to identify the ideal number of neurons to use in a Deep Neural Network (DNN) model that will produce the lowest root mean squared error (RMSE). CRO can reduce the computational time since the population does not need to be coordinated in each computing units. The molecular structure in the CRO contains the set of neurons, while the potential energy (II) corresponds to the RMSE of the DNN model. At a minimum RMSE value, the accuracy of the moisture removal rate prediction increases given maximum temperature, sample temperature, time of drying, heat rate, and percent weight of the remaining algae. The DNN model created obtained an RMSE value of 4.9430 x$10^{-4}$ which corresponds to R -value of 0.9996 and 0.99958 in the training and validation phases.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9731859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drying is an essential step needed to improve the extraction of lipids and other valuable compounds in the algae for biodiesel production. However, there is a limited amount of information available regarding its drying kinetics. Previous studies have used computational intelligence e.g., artificial neural networks (ANN) and deep neural networks (DNN) to characterize the drying kinetics of algae. Chemical Reaction optimization (CRO), a recently introduced metaheuristic optimization approach, is employed in this study to identify the ideal number of neurons to use in a Deep Neural Network (DNN) model that will produce the lowest root mean squared error (RMSE). CRO can reduce the computational time since the population does not need to be coordinated in each computing units. The molecular structure in the CRO contains the set of neurons, while the potential energy (II) corresponds to the RMSE of the DNN model. At a minimum RMSE value, the accuracy of the moisture removal rate prediction increases given maximum temperature, sample temperature, time of drying, heat rate, and percent weight of the remaining algae. The DNN model created obtained an RMSE value of 4.9430 x$10^{-4}$ which corresponds to R -value of 0.9996 and 0.99958 in the training and validation phases.
藻类干燥动力学表征的深度神经网络(DNN)模型化学反应优化(CRO
干燥是一个必要的步骤,需要提高提取脂质和其他有价值的化合物在藻类生物柴油生产。然而,关于其干燥动力学的可用信息数量有限。以前的研究已经使用计算智能,如人工神经网络(ANN)和深度神经网络(DNN)来表征藻类的干燥动力学。化学反应优化(CRO)是最近引入的一种元启发式优化方法,在本研究中采用该方法来确定深度神经网络(DNN)模型中使用的理想神经元数量,以产生最低的均方根误差(RMSE)。由于不需要在每个计算单元中协调种群,因此CRO可以减少计算时间。CRO中的分子结构包含一组神经元,而势能(II)对应于DNN模型的RMSE。在最小RMSE值下,在给定最高温度、样品温度、干燥时间、热速率和剩余藻类重量百分比的情况下,去湿率预测的准确性增加。所创建的DNN模型的RMSE值为4.9430 x$10^{-4}$,对应于训练和验证阶段的R值分别为0.9996和0.99958。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信