Neural Network Deinterlacing Using Multiple Fields and Field-MSEs

Hyunsoo Choi, Chulhee Lee
{"title":"Neural Network Deinterlacing Using Multiple Fields and Field-MSEs","authors":"Hyunsoo Choi, Chulhee Lee","doi":"10.1109/IJCNN.2007.4371072","DOIUrl":null,"url":null,"abstract":"Generally, deinterlacing algorithms can be either classified as intra methods or inter methods. Intra methods interpolate missing lines by using surrounding pixels in the current field. Inter methods interpolate missing lines by using pixels and the motion information of multiple fields. Neural network deinterlacing that uses multiple fields has been proposed. It provides improved performance compared to existing neural network deinterlacing algorithms that use a single field. However, when adjacent fields are very different, neural network deinterlacing that uses multiple fields may not provide good performance. To address this problem, we propose using field-MSE values as additional inputs. These MSE values can provide helpful information so that the networks can consider field differences in using multiple fields. Experimental results show that the use of the proposed algorithm results in improved performance.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Generally, deinterlacing algorithms can be either classified as intra methods or inter methods. Intra methods interpolate missing lines by using surrounding pixels in the current field. Inter methods interpolate missing lines by using pixels and the motion information of multiple fields. Neural network deinterlacing that uses multiple fields has been proposed. It provides improved performance compared to existing neural network deinterlacing algorithms that use a single field. However, when adjacent fields are very different, neural network deinterlacing that uses multiple fields may not provide good performance. To address this problem, we propose using field-MSE values as additional inputs. These MSE values can provide helpful information so that the networks can consider field differences in using multiple fields. Experimental results show that the use of the proposed algorithm results in improved performance.
基于多场和场均方的神经网络去隔行
一般来说,去隔行算法可以分为内部方法和内部方法。Intra方法通过使用当前字段中的周围像素来插值缺失的行。Inter方法利用像素和多个字段的运动信息对缺失的行进行插值。提出了一种使用多域的神经网络去隔行处理方法。与使用单个字段的现有神经网络去隔行算法相比,它提供了更好的性能。然而,当相邻字段相差很大时,使用多个字段的神经网络去交错可能无法提供良好的性能。为了解决这个问题,我们建议使用字段- mse值作为额外的输入。这些MSE值可以提供有用的信息,以便网络可以在使用多个字段时考虑字段差异。实验结果表明,采用该算法可以提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信