{"title":"Comparison of Hill-Climbing and Artificial Neural Network Maximum Power Point Tracking Techniques for Photovoltaic Modules","authors":"Zarrad Ons, J. Aymen, A. Craciunescu, M. Popescu","doi":"10.1109/MCSI.2015.24","DOIUrl":null,"url":null,"abstract":"In this paper, two maximum power point tracking (MPPT) algorithms in a photovoltaic electrical energy generation system are analyzed and compared. The Matlab/Simulink is used to establish the model of a photovoltaic system with MPPT function. This system is developed by combining the models of established solar module and DC-DC boost converter with the algorithms of hill climbing (HC) and artificial neural network (ANC), respectively. The system is simulated under different atmospheric conditions and MPPT algorithms. According to the comparisons among the simulation results, it can be concluded that the photovoltaic system with ANN MPPT algorithm is simpler: it does not require knowledge of internal system parameters, needs less calculation, is faster and provides a compact solution for multi-variable problems.","PeriodicalId":371635,"journal":{"name":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, two maximum power point tracking (MPPT) algorithms in a photovoltaic electrical energy generation system are analyzed and compared. The Matlab/Simulink is used to establish the model of a photovoltaic system with MPPT function. This system is developed by combining the models of established solar module and DC-DC boost converter with the algorithms of hill climbing (HC) and artificial neural network (ANC), respectively. The system is simulated under different atmospheric conditions and MPPT algorithms. According to the comparisons among the simulation results, it can be concluded that the photovoltaic system with ANN MPPT algorithm is simpler: it does not require knowledge of internal system parameters, needs less calculation, is faster and provides a compact solution for multi-variable problems.