{"title":"Experimental validation of an equivalent dynamic model for active distribution networks","authors":"N. Fulgêncio, J. Rodrigues, C. Moreira","doi":"10.1109/SEST.2019.8849053","DOIUrl":null,"url":null,"abstract":"In this paper a real-time laboratorial experiment is presented, intended to validate a “grey-box” equivalent model for medium voltage active distribution networks with high presence of converter-connected generation, considering the latest European grid codes requirements, in response to severe faults at the transmission network side. A hybrid setup was implemented at INESC TEC's laboratory (Porto, Portugal), relying on a real-time digital simulator to provide the interface between simulation and physical assets available at the laboratory, in a power-hardware-in-the-loop configuration. The study considered the laboratory's internal network to be operating (virtually) as a medium voltage distribution network with converter-connected generation (fault ride through compliant), connected to a fully-detailed transmission network model. The aggregated reactive power response of the laboratory's network was fitted by the dynamic equivalent model, recurring to an evolutionary particle swarm optimization algorithm. The methodology adopted, testing conditions and respective results are presented.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a real-time laboratorial experiment is presented, intended to validate a “grey-box” equivalent model for medium voltage active distribution networks with high presence of converter-connected generation, considering the latest European grid codes requirements, in response to severe faults at the transmission network side. A hybrid setup was implemented at INESC TEC's laboratory (Porto, Portugal), relying on a real-time digital simulator to provide the interface between simulation and physical assets available at the laboratory, in a power-hardware-in-the-loop configuration. The study considered the laboratory's internal network to be operating (virtually) as a medium voltage distribution network with converter-connected generation (fault ride through compliant), connected to a fully-detailed transmission network model. The aggregated reactive power response of the laboratory's network was fitted by the dynamic equivalent model, recurring to an evolutionary particle swarm optimization algorithm. The methodology adopted, testing conditions and respective results are presented.