{"title":"Experimental Study of Wave Forces on an Offshore Wind Turbine Tower Model","authors":"K. Ram, M. R. Ahmed, Young-Ho Lee","doi":"10.1109/APWCONCSE.2017.00054","DOIUrl":null,"url":null,"abstract":"A study of a tapered wind turbine tower is performed using particle image velocimetry and numerical methods. A 1.5 MW wind turbine base was studied and re-designed. A scaled model of a simple tapered tower base was studied in a wave channel using Particle Image Velocimetry (PIV) to understand the flow phenomena at the tower base. Theoreti9cal and experimental results were found using Morrison equations. The diffraction parameter shows that the linear wave theory is not valid for inertial co-efficient calculations. A direct value of 2.0 resulted for the inertial coefficient values while a lower drag influence was noted at coefficient of drag = 0.315. The turbine’s horizontal force profile is improved in this study to yield a 69% reduction in overturning moment by redesigning the turbines submerged tower.","PeriodicalId":215519,"journal":{"name":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCONCSE.2017.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A study of a tapered wind turbine tower is performed using particle image velocimetry and numerical methods. A 1.5 MW wind turbine base was studied and re-designed. A scaled model of a simple tapered tower base was studied in a wave channel using Particle Image Velocimetry (PIV) to understand the flow phenomena at the tower base. Theoreti9cal and experimental results were found using Morrison equations. The diffraction parameter shows that the linear wave theory is not valid for inertial co-efficient calculations. A direct value of 2.0 resulted for the inertial coefficient values while a lower drag influence was noted at coefficient of drag = 0.315. The turbine’s horizontal force profile is improved in this study to yield a 69% reduction in overturning moment by redesigning the turbines submerged tower.