Signature search method for 3-D pose refinement with range data

N. Burtnyk, M. Greenspan
{"title":"Signature search method for 3-D pose refinement with range data","authors":"N. Burtnyk, M. Greenspan","doi":"10.1109/MFI.1994.398438","DOIUrl":null,"url":null,"abstract":"In many applications in robotics, the geometry of the task environment is uncertain and so the pose of the target object may be known only approximately. For the object to be grasped successfully its actual pose must be determined using some form of vision sensing. This paper presents a novel method of processing 3-D range data for pose refinement. Given the model of the object and its approximate pose, the algorithm adjusts the pose of the object model for a best fit to the measured 3-D data. The main attributes of this algorithm are that its performance is largely unaffected by background clutter including some tolerance to occlusion and that it imposes no restrictions on the surface shape or representation scheme used for the model.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In many applications in robotics, the geometry of the task environment is uncertain and so the pose of the target object may be known only approximately. For the object to be grasped successfully its actual pose must be determined using some form of vision sensing. This paper presents a novel method of processing 3-D range data for pose refinement. Given the model of the object and its approximate pose, the algorithm adjusts the pose of the object model for a best fit to the measured 3-D data. The main attributes of this algorithm are that its performance is largely unaffected by background clutter including some tolerance to occlusion and that it imposes no restrictions on the surface shape or representation scheme used for the model.<>
基于距离数据的三维姿态精细特征搜索方法
在机器人技术的许多应用中,任务环境的几何形状是不确定的,因此目标物体的姿态可能只能近似地知道。为了成功地抓住物体,它的实际姿势必须使用某种形式的视觉感知来确定。提出了一种新的三维距离数据处理方法。给定目标模型及其近似姿态,该算法调整目标模型的姿态,使其最适合测量的三维数据。该算法的主要属性是其性能在很大程度上不受背景杂波的影响,包括对遮挡的一些容忍,并且它对模型使用的表面形状或表示方案没有限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信