Fixed point theorems in the generalized rational type of C-class functions in b-metric spaces with Application to Integral Equation

Asadi Mehdi, Afshar Mehdi
{"title":"Fixed point theorems in the generalized rational type of C-class functions in b-metric spaces with Application to Integral Equation","authors":"Asadi Mehdi, Afshar Mehdi","doi":"10.17993/3cemp.2022.110250.64-74","DOIUrl":null,"url":null,"abstract":"In this paper, we study some results of existence and uniqueness of fixed points for a C-class of mappings satisfying an inequality of rational type in b-metric spaces. After definition of C-class functions covering a large class of contractive conditions by Ansari [2]. Our results extend very recent results in the literature; as well as Khan in [14] and later Fisher in [9] gave a revised improved version of Khan’s result and Piri in [17] a new generalization of Khan’s Theorem. At the end, we present an example of finding solutions for an integral equation.","PeriodicalId":365908,"journal":{"name":"3C Empresa. Investigación y pensamiento crítico","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Empresa. Investigación y pensamiento crítico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3cemp.2022.110250.64-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study some results of existence and uniqueness of fixed points for a C-class of mappings satisfying an inequality of rational type in b-metric spaces. After definition of C-class functions covering a large class of contractive conditions by Ansari [2]. Our results extend very recent results in the literature; as well as Khan in [14] and later Fisher in [9] gave a revised improved version of Khan’s result and Piri in [17] a new generalization of Khan’s Theorem. At the end, we present an example of finding solutions for an integral equation.
b-度量空间中c类函数的广义有理型不动点定理及其在积分方程中的应用
本文研究了b-度量空间中满足有理型不等式的c类映射不动点的存在唯一性的一些结果。由Ansari[2]定义了c类函数,覆盖了一大类压缩条件。我们的结果扩展了最近文献中的结果;以及[14]中的Khan和后来的[9]中的Fisher给出了Khan结果的修正改进版本,[17]中的Piri给出了Khan定理的新推广。最后,我们给出了一个求积分方程解的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信