Discovery of Versatile Temporal Subspace Patterns in 3-D Datasets

Zhen Hu, R. Bhatnagar
{"title":"Discovery of Versatile Temporal Subspace Patterns in 3-D Datasets","authors":"Zhen Hu, R. Bhatnagar","doi":"10.1109/ICDM.2011.56","DOIUrl":null,"url":null,"abstract":"Most existing methods for clustering temporal data are based on either a strict similarity metric or a precisely defined temporal profile such as a sine, exponential wave etc. Also, these methods compute similarity metric across the entire time-span of the objects. However these types of temporal patterns are more useful in many biological analysis, where it is important to observe gene expression pattens across arbitrary subintervals. These types of temporal patterns are very useful in bioinformatics, where it is important to observe gene expression pattens across arbitrary subintervals. In this paper we present an algorithm for searching for multiple contiguous temporal subintervals within which the selected objects demonstrate existence of clear patterns. We demonstrate the power and advantages of our algorithm by using a synthetic dataset and a pharmacokinetics dataset for which other researchers have recently published their results. We compare and contrast our results with these results to show superiority of our approach.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most existing methods for clustering temporal data are based on either a strict similarity metric or a precisely defined temporal profile such as a sine, exponential wave etc. Also, these methods compute similarity metric across the entire time-span of the objects. However these types of temporal patterns are more useful in many biological analysis, where it is important to observe gene expression pattens across arbitrary subintervals. These types of temporal patterns are very useful in bioinformatics, where it is important to observe gene expression pattens across arbitrary subintervals. In this paper we present an algorithm for searching for multiple contiguous temporal subintervals within which the selected objects demonstrate existence of clear patterns. We demonstrate the power and advantages of our algorithm by using a synthetic dataset and a pharmacokinetics dataset for which other researchers have recently published their results. We compare and contrast our results with these results to show superiority of our approach.
三维数据集中多用途时间子空间模式的发现
大多数现有的时间数据聚类方法要么基于严格的相似度度量,要么基于精确定义的时间轮廓,如正弦、指数波等。此外,这些方法还计算了对象在整个时间跨度内的相似性度量。然而,这些类型的时间模式在许多生物学分析中更有用,其中重要的是观察任意亚区间的基因表达模式。这些类型的时间模式在生物信息学中非常有用,在生物信息学中,观察任意亚区间的基因表达模式非常重要。在本文中,我们提出了一种搜索多个连续时间子区间的算法,在这些子区间内,所选对象显示出明显的模式存在。我们通过使用合成数据集和其他研究人员最近发表的药代动力学数据集来展示我们算法的功能和优势。我们将我们的结果与这些结果进行比较和对比,以显示我们的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信