Sparse sufficient dimension reduction with heteroscedasticity

Haoyang Cheng, Wenquan Cui
{"title":"Sparse sufficient dimension reduction with heteroscedasticity","authors":"Haoyang Cheng, Wenquan Cui","doi":"10.1142/s0219691321500375","DOIUrl":null,"url":null,"abstract":"Heteroscedasticity often appears in the high-dimensional data analysis. In order to achieve a sparse dimension reduction direction for high-dimensional data with heteroscedasticity, we propose a new sparse sufficient dimension reduction method, called Lasso-PQR. From the candidate matrix derived from the principal quantile regression (PQR) method, we construct a new artificial response variable which is made up from top eigenvectors of the candidate matrix. Then we apply a Lasso regression to obtain sparse dimension reduction directions. While for the “large [Formula: see text] small [Formula: see text]” case that [Formula: see text], we use principal projection to solve the dimension reduction problem in a lower-dimensional subspace and projection back to the original dimension reduction problem. Theoretical properties of the methodology are established. Compared with several existing methods in the simulations and real data analysis, we demonstrate the advantages of our method in the high dimension data with heteroscedasticity.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heteroscedasticity often appears in the high-dimensional data analysis. In order to achieve a sparse dimension reduction direction for high-dimensional data with heteroscedasticity, we propose a new sparse sufficient dimension reduction method, called Lasso-PQR. From the candidate matrix derived from the principal quantile regression (PQR) method, we construct a new artificial response variable which is made up from top eigenvectors of the candidate matrix. Then we apply a Lasso regression to obtain sparse dimension reduction directions. While for the “large [Formula: see text] small [Formula: see text]” case that [Formula: see text], we use principal projection to solve the dimension reduction problem in a lower-dimensional subspace and projection back to the original dimension reduction problem. Theoretical properties of the methodology are established. Compared with several existing methods in the simulations and real data analysis, we demonstrate the advantages of our method in the high dimension data with heteroscedasticity.
具有异方差的稀疏充分降维
异方差在高维数据分析中经常出现。为了实现具有异方差的高维数据的稀疏降维方向,我们提出了一种新的稀疏充分降维方法Lasso-PQR。根据主分位数回归(PQR)方法得到的候选矩阵,由候选矩阵的顶特征向量组成一个新的人工响应变量。然后应用Lasso回归得到稀疏降维方向。而对于“大[公式:见文]小[公式:见文]”的情况[公式:见文],我们使用主投影在低维子空间中解决降维问题并投影回原始降维问题。建立了该方法的理论性质。在仿真和实际数据分析中与现有的几种方法进行了比较,证明了该方法在具有异方差的高维数据中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信