Inverting the Turing jump in complexity theory

Stephen A. Fenner
{"title":"Inverting the Turing jump in complexity theory","authors":"Stephen A. Fenner","doi":"10.1109/SCT.1995.514732","DOIUrl":null,"url":null,"abstract":"The paper investigates the invertibility of certain analogs of the Turing jump operator in the polynomial-time Turing degrees. If /spl Cscr/ is some complexity class, the /spl Cscr/-jump of a set A is the canonical /spl Cscr/-complete set relative to A. It is shown that the PSPACE-jump and EXP-jump operators are not invertible, i.e., there is a PSPACE-hard (resp. EXP-hard) set that is not p-time Turing equivalent to the PSPACE-jump (resp. EXP-jump) of any set. It is also shown that if PH collapses to /spl Sigma//sub k//sup p/, then the /spl Sigma//sub k//sup p/-jump is not invertible. In particular, if NP=co-NP, then the NP-jump is not invertible, witnessed, in particular, by G/spl oplus/SAT, where G is any 1-generic set. These results run contrary to the Friedberg (1957) Completeness Criterion in recursion theory, which says that every (recursive) Turing degree above 0' is the Turing jump of another degree. The sets used in the paper to witness /spl Cscr/-jump noninvertibility are all of the form G/spl oplus/C, cohere G is 1-generic and C is some /spl Cscr/-complete set. Other facts regarding 1-generics G and G/spl oplus/SAT are also explored. In particular, G always lies in NP/sup A/-P/sup A/ for some A/spl les/G/sub tt//sup P/, but if A/spl les//sub /spl oplus/P-tt//sup p/ G/sub /spl oplus//SAT/spl les//sub T//sup P/SAT/sup A/ for some A, then G/spl les//sub T//sup P/A/spl oplus/SAT, which in turn implies either G/spl les//sub T//sup P/ A or P/spl ne/NP.","PeriodicalId":318382,"journal":{"name":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1995.514732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper investigates the invertibility of certain analogs of the Turing jump operator in the polynomial-time Turing degrees. If /spl Cscr/ is some complexity class, the /spl Cscr/-jump of a set A is the canonical /spl Cscr/-complete set relative to A. It is shown that the PSPACE-jump and EXP-jump operators are not invertible, i.e., there is a PSPACE-hard (resp. EXP-hard) set that is not p-time Turing equivalent to the PSPACE-jump (resp. EXP-jump) of any set. It is also shown that if PH collapses to /spl Sigma//sub k//sup p/, then the /spl Sigma//sub k//sup p/-jump is not invertible. In particular, if NP=co-NP, then the NP-jump is not invertible, witnessed, in particular, by G/spl oplus/SAT, where G is any 1-generic set. These results run contrary to the Friedberg (1957) Completeness Criterion in recursion theory, which says that every (recursive) Turing degree above 0' is the Turing jump of another degree. The sets used in the paper to witness /spl Cscr/-jump noninvertibility are all of the form G/spl oplus/C, cohere G is 1-generic and C is some /spl Cscr/-complete set. Other facts regarding 1-generics G and G/spl oplus/SAT are also explored. In particular, G always lies in NP/sup A/-P/sup A/ for some A/spl les/G/sub tt//sup P/, but if A/spl les//sub /spl oplus/P-tt//sup p/ G/sub /spl oplus//SAT/spl les//sub T//sup P/SAT/sup A/ for some A, then G/spl les//sub T//sup P/A/spl oplus/SAT, which in turn implies either G/spl les//sub T//sup P/ A or P/spl ne/NP.
颠覆复杂性理论中的图灵跳跃
本文研究了图灵跳跃算子在多项式时间图灵度上的可逆性。如果/spl Cscr/是某个复杂度类,则集合a的/spl Cscr/-jump是相对于a的正则/spl Cscr/-完全集合。证明了PSPACE-jump和EXP-jump算子是不可逆的,即存在一个PSPACE-hard(相对于其他复杂度类)。EXP-hard)集合,它不是p时间图灵等价于PSPACE-jump(参见p。EXP-jump)。如果PH坍缩为/spl Sigma//sub k//sup p/,则/spl Sigma//sub k//sup p/-跃变是不可逆的。特别地,如果NP=co-NP,那么NP跳跃是不可逆的,特别是由G/spl + /SAT证明,其中G是任意1-泛集。这些结果与Friedberg(1957)在递归理论中的完备性准则相反,该准则认为每一个大于0'的(递归)图灵度是另一个度的图灵跳。本文用来证明/spl Cscr/-跳跃不可逆性的集合都是G/spl + /C的形式,其中G是1泛型,C是某/spl Cscr/-完备集。关于1-泛型G和G/spl + /SAT的其他事实也进行了探讨。特别地,对于某些A/spl les/G/ subtt //sup A/, G总是位于NP/sup A/-P/sup A/,但如果A/spl les//sub /spl oplus/P-tt//sup P/ G/sub /spl oplus//SAT/spl les// sup P/SAT/sup A/对于某些A,则G/spl les//sub T//sup P/A/spl oplus/SAT,则G/spl les//sub T//sup P/A/spl oplus/SAT,这反过来意味着G/spl les//sub T//sup P/A或P/spl ne/NP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信