Semi-supervised classification for intrusion Detection System in networks

N. Chaudhari, Aruna Tiwari, Urjita Thakar, Jaya Thomas
{"title":"Semi-supervised classification for intrusion Detection System in networks","authors":"N. Chaudhari, Aruna Tiwari, Urjita Thakar, Jaya Thomas","doi":"10.1109/ICCIS.2010.5518571","DOIUrl":null,"url":null,"abstract":"We propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data.
网络入侵检测系统的半监督分类
提出了一种用于入侵检测的半监督分类器。在我们的方法中,我们对进入计算机网络的数据进行分类。为了实现这一点,我们从两大类数据开始,即恶意数据和良好数据。我们使用基于球面决策边界的支持向量机分类器对作为训练样本的恶意数据子集进行分类。在入侵检测系统(IDS)的数据库中,所有根据我们的分类器识别为恶意数据的数据都被作为攻击的签名。使用我们的分类器对样本外数据样本进行测试,我们观察到系统对web日志数据的准确率为72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信