On the Complexity of Isomorphism Problems for Tensors, Groups, and Polynomials I: Tensor Isomorphism-Completeness

Joshua A. Grochow, Youming Qiao
{"title":"On the Complexity of Isomorphism Problems for Tensors, Groups, and Polynomials I: Tensor Isomorphism-Completeness","authors":"Joshua A. Grochow, Youming Qiao","doi":"10.4230/LIPIcs.ITCS.2021.31","DOIUrl":null,"url":null,"abstract":"We study the complexity of isomorphism problems for tensors, groups, and polynomials. These problems have been studied in multivariate cryptography, machine learning, quantum information, and computational group theory. We show that these problems are all polynomial-time equivalent, creating bridges between problems traditionally studied in myriad research areas. This prompts us to define the complexity class TI, namely problems that reduce to the Tensor Isomorphism (TI) problem in polynomial time. Our main technical result is a polynomial-time reduction from d-tensor isomorphism to 3-tensor isomorphism. In the context of quantum information, this result gives multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under stochastic local operations and classical communication (SLOCC). 2012 ACM Subject Classification Theory of computation → Complexity classes; Computing methodologies → Linear algebra algorithms; Hardware → Quantum communication and cryptography","PeriodicalId":123734,"journal":{"name":"Information Technology Convergence and Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology Convergence and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITCS.2021.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We study the complexity of isomorphism problems for tensors, groups, and polynomials. These problems have been studied in multivariate cryptography, machine learning, quantum information, and computational group theory. We show that these problems are all polynomial-time equivalent, creating bridges between problems traditionally studied in myriad research areas. This prompts us to define the complexity class TI, namely problems that reduce to the Tensor Isomorphism (TI) problem in polynomial time. Our main technical result is a polynomial-time reduction from d-tensor isomorphism to 3-tensor isomorphism. In the context of quantum information, this result gives multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under stochastic local operations and classical communication (SLOCC). 2012 ACM Subject Classification Theory of computation → Complexity classes; Computing methodologies → Linear algebra algorithms; Hardware → Quantum communication and cryptography
张量、群和多项式的同构问题的复杂性I:张量同构-完备性
我们研究了张量、群和多项式的同构问题的复杂性。这些问题已经在多元密码学、机器学习、量子信息和计算群理论中得到了研究。我们表明,这些问题都是多项式时间等效的,在无数研究领域传统研究的问题之间建立了桥梁。这促使我们定义复杂度类TI,即在多项式时间内简化为张量同构(TI)问题的问题。我们的主要技术成果是从d张量同构到3张量同构的多项式时间化简。在量子信息环境下,该结果给出了在随机局部操作和经典通信(SLOCC)下保持等价的多方到三方纠缠转换过程。2012 ACM学科分类:计算理论→复杂度类;计算方法→线性代数算法;硬件→量子通信和密码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信