Spectral Analysis of EEG Data for Ocular Artifact Removal Using Wavelet Transform Technique

R. K. Srinanthini, P. Srinivasan, S. Arun
{"title":"Spectral Analysis of EEG Data for Ocular Artifact Removal Using Wavelet Transform Technique","authors":"R. K. Srinanthini, P. Srinivasan, S. Arun","doi":"10.1109/ICRAECC43874.2019.8995021","DOIUrl":null,"url":null,"abstract":"The success of image processing enables electroencephalography (EEG) portable devices. It has initiated the step to a new concept like processing a minimum count of EEG channels for health monitoring and brain technical system at low cost. We present an adaptive filtering to effectively remove Ocular Artifact (OA) in EEG data. This removal is based on time-frequency analysis approach which is able to identify and filter automatically present ocular and muscular artifacts embedded in EEG. For the occurrence of slight and heavy artifacts, ocular artifact removal method provides a relative low error compared to lower traditional techniques. The results obtained can be used as a solution in ambulatory healthcare systems, where low count EEG channels or even an individual channel is not available.","PeriodicalId":137313,"journal":{"name":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAECC43874.2019.8995021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The success of image processing enables electroencephalography (EEG) portable devices. It has initiated the step to a new concept like processing a minimum count of EEG channels for health monitoring and brain technical system at low cost. We present an adaptive filtering to effectively remove Ocular Artifact (OA) in EEG data. This removal is based on time-frequency analysis approach which is able to identify and filter automatically present ocular and muscular artifacts embedded in EEG. For the occurrence of slight and heavy artifacts, ocular artifact removal method provides a relative low error compared to lower traditional techniques. The results obtained can be used as a solution in ambulatory healthcare systems, where low count EEG channels or even an individual channel is not available.
基于小波变换去除眼伪影的脑电信号频谱分析
图像处理的成功使脑电图(EEG)便携式设备成为可能。它开创了以低成本处理最少脑电图通道数用于健康监测和脑技术系统的新概念。提出了一种自适应滤波方法,有效地去除脑电数据中的眼伪影。这种去除基于时频分析方法,能够自动识别和过滤嵌入在EEG中的眼部和肌肉伪影。对于轻微和严重伪影的出现,与较低的传统技术相比,眼部伪影去除方法的误差相对较低。所获得的结果可以用作门诊医疗系统的解决方案,其中低计数EEG通道甚至单个通道不可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信