Multi-objective Optimization of High Efficiency PMa-SynRMs Based on Search Space Decay Method for Surrogate Model

Yiming Ma, Zequan Li, Rufei He, Jin Wang, K. Shuai, Haoyu Kang, Lu Sun, Libing Zhou
{"title":"Multi-objective Optimization of High Efficiency PMa-SynRMs Based on Search Space Decay Method for Surrogate Model","authors":"Yiming Ma, Zequan Li, Rufei He, Jin Wang, K. Shuai, Haoyu Kang, Lu Sun, Libing Zhou","doi":"10.1109/CEEPE58418.2023.10166494","DOIUrl":null,"url":null,"abstract":"This work proposes a search space decay way to improve the efficiency of optimization for the most-frequent operational zone of magnet assisted synchronous reluctance motors (PMa-SynRMs). In order to decay the global search space, an analytical model (AM) is built by the simplified magnetic equivalent circuit (MEC) of the rotor and stator. Then the radial basis function (RBF) model is established by the sampling in the local space to predict the performance of the motor which combined with nondominated sorting genetic algorithm II(NSGA-II). Finally, the effectiveness of the optimized result is verified by finite element analysis (FEA).","PeriodicalId":431552,"journal":{"name":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE58418.2023.10166494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a search space decay way to improve the efficiency of optimization for the most-frequent operational zone of magnet assisted synchronous reluctance motors (PMa-SynRMs). In order to decay the global search space, an analytical model (AM) is built by the simplified magnetic equivalent circuit (MEC) of the rotor and stator. Then the radial basis function (RBF) model is established by the sampling in the local space to predict the performance of the motor which combined with nondominated sorting genetic algorithm II(NSGA-II). Finally, the effectiveness of the optimized result is verified by finite element analysis (FEA).
基于代理模型搜索空间衰减法的高效pma - synrm多目标优化
本文提出了一种搜索空间衰减方法,以提高磁辅助同步磁阻电机最频繁运行区域的优化效率。为了减小全局搜索空间,利用转子和定子的简化磁等效电路(MEC)建立了解析模型。然后结合非支配排序遗传算法II(NSGA-II),通过在局部空间采样建立径向基函数(RBF)模型来预测电机的性能。最后,通过有限元分析验证了优化结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信