J. Sumaili, H. Keko, Vladimiro Miranda, Zhi Zhou, A. Botterud, Jianhui Wang
{"title":"Finding representative wind power scenarios and their probabilities for stochastic models","authors":"J. Sumaili, H. Keko, Vladimiro Miranda, Zhi Zhou, A. Botterud, Jianhui Wang","doi":"10.1109/ISAP.2011.6082195","DOIUrl":null,"url":null,"abstract":"This paper analyzes the application of clustering techniques for wind power scenario reduction. The results have shown the unimodal structure of the scenario generated under a Monte Carlo process. The unimodal structure has been confirmed by the modes found by the information theoretic learning mean shift algorithm. The paper also presents a new technique able to represent the wind power forecasting uncertainty by a set of representative scenarios capable of characterizing the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative scenarios associated with a probability of occurrence can be created finding the areas of high probability density. This will allow the reduction of the computational burden in stochastic models that require scenario representation.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
This paper analyzes the application of clustering techniques for wind power scenario reduction. The results have shown the unimodal structure of the scenario generated under a Monte Carlo process. The unimodal structure has been confirmed by the modes found by the information theoretic learning mean shift algorithm. The paper also presents a new technique able to represent the wind power forecasting uncertainty by a set of representative scenarios capable of characterizing the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative scenarios associated with a probability of occurrence can be created finding the areas of high probability density. This will allow the reduction of the computational burden in stochastic models that require scenario representation.