Blind channel identification based on higher-order cumulant fitting using genetic algorithms

S. Chen, S. McLaughlin
{"title":"Blind channel identification based on higher-order cumulant fitting using genetic algorithms","authors":"S. Chen, S. McLaughlin","doi":"10.1109/HOST.1997.613512","DOIUrl":null,"url":null,"abstract":"A family of blind equalisation algorithms identifies a channel model based on a higher-order cumulant (HOC) fitting approach. Since HOC cost functions are multimodal, gradient search techniques require a good initial estimate to avoid converging to local minima. We present a blind identification scheme which uses genetic algorithms (GAs) to optimise a HOC cost function. Because GAs are efficient global optimal search strategies, the proposed method guarantees to find a global optimal channel estimate. A micro-GA implementation is adopted to further enhance computational efficiency. As is demonstrated in computer simulation, this GA based scheme is robust and accurate, and has a fast convergence performance.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A family of blind equalisation algorithms identifies a channel model based on a higher-order cumulant (HOC) fitting approach. Since HOC cost functions are multimodal, gradient search techniques require a good initial estimate to avoid converging to local minima. We present a blind identification scheme which uses genetic algorithms (GAs) to optimise a HOC cost function. Because GAs are efficient global optimal search strategies, the proposed method guarantees to find a global optimal channel estimate. A micro-GA implementation is adopted to further enhance computational efficiency. As is demonstrated in computer simulation, this GA based scheme is robust and accurate, and has a fast convergence performance.
基于遗传算法的高阶累积量拟合盲信道识别
一组盲均衡算法基于高阶累积量(HOC)拟合方法识别信道模型。由于HOC代价函数是多模态的,梯度搜索技术需要一个好的初始估计,以避免收敛到局部最小值。我们提出了一种使用遗传算法(GAs)来优化HOC成本函数的盲识别方案。由于遗传算法是一种高效的全局最优搜索策略,该方法能够保证找到全局最优信道估计。采用微遗传算法实现,进一步提高了计算效率。计算机仿真结果表明,该算法鲁棒性好,精度高,收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信