A hybrid algorithm for fuzzy clustering based on global and local membership degree

Bruno A. Pimentel, Jadson Crislan Santos Costa
{"title":"A hybrid algorithm for fuzzy clustering based on global and local membership degree","authors":"Bruno A. Pimentel, Jadson Crislan Santos Costa","doi":"10.1109/IJCNN55064.2022.9892394","DOIUrl":null,"url":null,"abstract":"The clustering task has challenges that change according to the data, thus different algorithms have been proposed where each one has a bias on the data. In the fuzzy clustering approach, the most popular algorithm is the Fuzzy C-Means (FCM), which uses a global view of variables to calculate the degree of membership. On the other hand, the Multivariate Fuzzy C-Means (MFCM) uses a local view of variables to calculate the degree of membership. In this work, we proposed a new hybrid algorithm to use a combined local and global view approaches. For this, a new objective function based on the hybridization parameter is introduced. The experiments show the robustness and superiority of the proposed algorithm in real and synthetic datasets in most of the analyzed scenarios.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The clustering task has challenges that change according to the data, thus different algorithms have been proposed where each one has a bias on the data. In the fuzzy clustering approach, the most popular algorithm is the Fuzzy C-Means (FCM), which uses a global view of variables to calculate the degree of membership. On the other hand, the Multivariate Fuzzy C-Means (MFCM) uses a local view of variables to calculate the degree of membership. In this work, we proposed a new hybrid algorithm to use a combined local and global view approaches. For this, a new objective function based on the hybridization parameter is introduced. The experiments show the robustness and superiority of the proposed algorithm in real and synthetic datasets in most of the analyzed scenarios.
基于全局和局部隶属度的模糊聚类混合算法
聚类任务具有根据数据变化的挑战,因此提出了不同的算法,其中每个算法对数据都有偏差。在模糊聚类方法中,最流行的算法是模糊c均值(FCM),它使用全局变量视图来计算隶属度。另一方面,多元模糊c均值(Multivariate Fuzzy C-Means, MFCM)使用变量的局部视图来计算隶属度。在这项工作中,我们提出了一种新的混合算法,使用局部和全局视图相结合的方法。为此,引入了一种新的基于杂交参数的目标函数。实验结果表明,在大多数分析场景下,该算法在真实数据集和合成数据集上都具有鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信