Complex Dynamics of 4D Hopfield-Type Neural Network with Two Parameters

Zengqiang Chen, Pengfei Chen
{"title":"Complex Dynamics of 4D Hopfield-Type Neural Network with Two Parameters","authors":"Zengqiang Chen, Pengfei Chen","doi":"10.1109/IWCFTA.2009.54","DOIUrl":null,"url":null,"abstract":"In this paper, a novel four-dimensional (4D) autonomous continuous time Hopfield-type neural network with two parameters is investigated. Computer simulations show that the 4D Hopfield neural network has rich and funny dynamics, and it can display equilibrium, periodic attractor, chaotic attractor and quasi-periodic attractor for different parameters. Moreover, when the system is chaotic, its positive Lyapunov exponent is much larger than those of the chaotic Hopfield neural networks already reported. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation analysis and phase portraits.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel four-dimensional (4D) autonomous continuous time Hopfield-type neural network with two parameters is investigated. Computer simulations show that the 4D Hopfield neural network has rich and funny dynamics, and it can display equilibrium, periodic attractor, chaotic attractor and quasi-periodic attractor for different parameters. Moreover, when the system is chaotic, its positive Lyapunov exponent is much larger than those of the chaotic Hopfield neural networks already reported. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation analysis and phase portraits.
双参数四维hopfield型神经网络的复杂动力学
本文研究了一种新的四维(4D)自主连续时间hopfield型双参数神经网络。计算机仿真表明,该四维Hopfield神经网络具有丰富而有趣的动力学特性,在不同的参数下可以表现出平衡、周期吸引子、混沌吸引子和准周期吸引子。此外,当系统处于混沌状态时,其Lyapunov正指数远大于已有报道的混沌Hopfield神经网络。利用李雅普诺夫指数谱、分岔分析和相图进一步研究了系统的复杂动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信