Blind source separation by nonnegative matrix factorization with minimum-volume constraint

Zuyuan Yang, Guoxu Zhou, Shuxue Ding, S. Xie
{"title":"Blind source separation by nonnegative matrix factorization with minimum-volume constraint","authors":"Zuyuan Yang, Guoxu Zhou, Shuxue Ding, S. Xie","doi":"10.1109/ICICIP.2010.5565228","DOIUrl":null,"url":null,"abstract":"Recently, nonnegative matrix factorization (NMF) attracts more and more attentions for the promising of wide applications. A problem that still remains is that, however, the factors resulted from it may not necessarily be realistically interpretable. Some constraints are usually added to the standard NMF to generate such interpretive results. In this paper, a minimum-volume constrained NMF is proposed and an efficient multiplicative update algorithm is developed based on the natural gradient optimization. The proposed method can be applied to the blind source separation (BSS) problem, a hot topic with many potential applications, especially if the sources are mutually dependent. Simulation results of BSS for images show the superiority of the proposed method.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5565228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, nonnegative matrix factorization (NMF) attracts more and more attentions for the promising of wide applications. A problem that still remains is that, however, the factors resulted from it may not necessarily be realistically interpretable. Some constraints are usually added to the standard NMF to generate such interpretive results. In this paper, a minimum-volume constrained NMF is proposed and an efficient multiplicative update algorithm is developed based on the natural gradient optimization. The proposed method can be applied to the blind source separation (BSS) problem, a hot topic with many potential applications, especially if the sources are mutually dependent. Simulation results of BSS for images show the superiority of the proposed method.
基于最小体积约束的非负矩阵分解盲源分离
近年来,非负矩阵分解(NMF)因具有广泛的应用前景而受到越来越多的关注。然而,仍然存在的一个问题是,由此产生的因素可能不一定是现实的解释。通常在标准NMF中添加一些约束来生成这种解释性结果。本文提出了一种基于自然梯度优化的最小体积约束NMF,并提出了一种高效的乘法更新算法。该方法可以应用于盲源分离(BSS)问题,这是一个具有许多潜在应用前景的热点问题,特别是当源相互依赖时。图像的BSS仿真结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信