Annotation-aware web clustering based on topic model and random walks

Jiashen Sun, Xiaojie Wang, Caixia Yuan, Guannan Fang
{"title":"Annotation-aware web clustering based on topic model and random walks","authors":"Jiashen Sun, Xiaojie Wang, Caixia Yuan, Guannan Fang","doi":"10.1109/CCIS.2011.6045023","DOIUrl":null,"url":null,"abstract":"Web page clustering based on semantic or topic promises improved search and browsing on the web. Intuitively, tags from social bookmarking websites such as del.icio.us can be used as a complementary source to document thus improving clustering of web pages. In this paper, we present a novel model which employs topic model to associate annotated document with a distribution of topics, and then constructs a graph including tags, document and topics by performing a Random Walks for clustering. We examine the performance of our model on a real-world data set, illustrating that our model provides improved clustering performance than algorithm utilizing page text alone.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Web page clustering based on semantic or topic promises improved search and browsing on the web. Intuitively, tags from social bookmarking websites such as del.icio.us can be used as a complementary source to document thus improving clustering of web pages. In this paper, we present a novel model which employs topic model to associate annotated document with a distribution of topics, and then constructs a graph including tags, document and topics by performing a Random Walks for clustering. We examine the performance of our model on a real-world data set, illustrating that our model provides improved clustering performance than algorithm utilizing page text alone.
基于主题模型和随机漫步的注释感知web聚类
基于语义或主题的网页聚类有望改善网络上的搜索和浏览。直观地说,来自诸如del.icio.us这样的社交书签网站的标签可以作为文档的补充来源,从而改善网页的聚类。本文提出了一种新的模型,该模型利用主题模型将标注文档与主题分布关联起来,然后通过随机行走进行聚类,构造一个包含标签、文档和主题的图。我们检查了模型在真实数据集上的性能,说明我们的模型比单独使用页面文本的算法提供了更好的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信