An Interpretable Machine Learning Model Enhanced Integrated CPU-GPU DVFS Governor

Jurn-Gyu Park, N. Dutt, Sung-Soo Lim
{"title":"An Interpretable Machine Learning Model Enhanced Integrated CPU-GPU DVFS Governor","authors":"Jurn-Gyu Park, N. Dutt, Sung-Soo Lim","doi":"10.1145/3470974","DOIUrl":null,"url":null,"abstract":"Modern heterogeneous CPU-GPU-based mobile architectures, which execute intensive mobile gaming/graphics applications, use software governors to achieve high performance with energy-efficiency. However, existing governors typically utilize simple statistical or heuristic models, assuming linear relationships using a small unbalanced dataset of mobile games; and the limitations result in high prediction errors for dynamic and diverse gaming workloads on heterogeneous platforms. To overcome these limitations, we propose an interpretable machine learning (ML) model enhanced integrated CPU-GPU governor: (1) It builds tree-based piecewise linear models (i.e., model trees) offline considering both high accuracy (low error) and interpretable ML models based on mathematical formulas using a simulatability operation counts quantitative metric. And then (2) it deploys the selected models for online estimation into an integrated CPU-GPU Dynamic Voltage Frequency Scaling governor. Our experiments on a test set of 20 mobile games exhibiting diverse characteristics show that our governor achieved significant energy efficiency gains of over 10% (up to 38%) improvements on average in energy-per-frame with a surprising-but-modest 3% improvement in Frames-per-Second performance, compared to a typical state-of-the-art governor that employs simple linear regression models.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Modern heterogeneous CPU-GPU-based mobile architectures, which execute intensive mobile gaming/graphics applications, use software governors to achieve high performance with energy-efficiency. However, existing governors typically utilize simple statistical or heuristic models, assuming linear relationships using a small unbalanced dataset of mobile games; and the limitations result in high prediction errors for dynamic and diverse gaming workloads on heterogeneous platforms. To overcome these limitations, we propose an interpretable machine learning (ML) model enhanced integrated CPU-GPU governor: (1) It builds tree-based piecewise linear models (i.e., model trees) offline considering both high accuracy (low error) and interpretable ML models based on mathematical formulas using a simulatability operation counts quantitative metric. And then (2) it deploys the selected models for online estimation into an integrated CPU-GPU Dynamic Voltage Frequency Scaling governor. Our experiments on a test set of 20 mobile games exhibiting diverse characteristics show that our governor achieved significant energy efficiency gains of over 10% (up to 38%) improvements on average in energy-per-frame with a surprising-but-modest 3% improvement in Frames-per-Second performance, compared to a typical state-of-the-art governor that employs simple linear regression models.
一个可解释的机器学习模型增强集成CPU-GPU DVFS调控器
现代基于异构cpu - gpu的移动架构执行密集的移动游戏/图形应用程序,使用软件调控器实现高性能和能效。然而,现有的调控器通常使用简单的统计或启发式模型,使用小型不平衡手机游戏数据集假设线性关系;这些限制导致了在异构平台上对动态和不同游戏工作负载的高预测误差。为了克服这些限制,我们提出了一种增强集成CPU-GPU调控器的可解释机器学习(ML)模型:(1)离线构建基于树的分段线性模型(即模型树),考虑高精度(低误差)和基于数学公式的可解释ML模型,使用可模拟性操作计数定量度量。然后(2)将选择的在线估计模型部署到集成的CPU-GPU动态电压频率调节器中。我们在20款表现出不同特征的手机游戏的测试集上进行的实验表明,与使用简单线性回归模型的典型的最先进的调控器相比,我们的调控器在每帧能量的平均提升上取得了显著的能源效率提升,超过10%(高达38%),每秒帧性能的提升幅度令人惊讶,但并不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信