{"title":"Recognition of isolated words in Bulgarian, by means of HMM","authors":"S. Hadjitodorov, B. Boyanov, B. Rahardjo","doi":"10.1109/PACRIM.1989.48342","DOIUrl":null,"url":null,"abstract":"The problem of the recognition of Bulgarian words by means of HMM (hidden Markov models) is discussed. The speech signal was low-pass filtered up to 4 kHz, sampled at 10 kHz, and pushed directly into the computer's memory (IBM PC/XT). Unvoiced segments were separated, and the pitch period was evaluated. For every voiced and unvoiced segment 12 LPC (linear predictive coding) coefficients were computed. These segments were used as states q/sub i/ in HMM and their LPC coefficients-an acoustic vector y/sub t/. On the basis of the training set a HMM for every word was generated. A modified Bayesian decision rule is proposed. As a result, if the decision rule is satisfied, the classification is simple; otherwise, the classification is given in the form of ordered couples. The proposed approach shows higher accuracy and is appropriate for word, command and expression recognition.<<ETX>>","PeriodicalId":256287,"journal":{"name":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1989.48342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of the recognition of Bulgarian words by means of HMM (hidden Markov models) is discussed. The speech signal was low-pass filtered up to 4 kHz, sampled at 10 kHz, and pushed directly into the computer's memory (IBM PC/XT). Unvoiced segments were separated, and the pitch period was evaluated. For every voiced and unvoiced segment 12 LPC (linear predictive coding) coefficients were computed. These segments were used as states q/sub i/ in HMM and their LPC coefficients-an acoustic vector y/sub t/. On the basis of the training set a HMM for every word was generated. A modified Bayesian decision rule is proposed. As a result, if the decision rule is satisfied, the classification is simple; otherwise, the classification is given in the form of ordered couples. The proposed approach shows higher accuracy and is appropriate for word, command and expression recognition.<>