Ícaro De Lima Rodrigues, D. B. D. Melo, Daniel Arnóbio Dantas Da Silva, Yves Rybarczyk, Danielo G. Gomes
{"title":"Padrões Bioacústicos como Identificadores Precisos da Presença de Rainha em Colmeias de Abelhas Melíferas","authors":"Ícaro De Lima Rodrigues, D. B. D. Melo, Daniel Arnóbio Dantas Da Silva, Yves Rybarczyk, Danielo G. Gomes","doi":"10.5753/wcama.2022.222913","DOIUrl":null,"url":null,"abstract":"A abelha rainha é a responsável pelo crescimento, renovação e estabilidade organizacional da sua colônia. Para saber se uma rainha melífera está presente na colmeia, o apicultor tem de abri-la, o que estressa as abelhas, destrói parte do ninho e provoca morte de operárias. Classificar a presença da rainha através do seu zumbido, por exemplo, é um método de inspeção não-invasivo e pode manter o bem-estar da colônia. Porém, padrões bioacústicos geram um volume considerável de dados. A utilização de classificadores incrementais com uma taxa de gravação diária pode manter a eficiência e reduzir este gargalo. Neste artigo, avaliamos de forma sistemática o desempenho de três classificadores incrementais: Hoeffding Tree, Random Forest e Naive Bayes. Destes três classificadores, o destaque foi o Naive Bayes com 10 janelas de 1 s /dia, tempo de resposta de somente 0,93 s e acurácia média de 97%.","PeriodicalId":127197,"journal":{"name":"Anais do XIII Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais (WCAMA 2022)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIII Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais (WCAMA 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wcama.2022.222913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A abelha rainha é a responsável pelo crescimento, renovação e estabilidade organizacional da sua colônia. Para saber se uma rainha melífera está presente na colmeia, o apicultor tem de abri-la, o que estressa as abelhas, destrói parte do ninho e provoca morte de operárias. Classificar a presença da rainha através do seu zumbido, por exemplo, é um método de inspeção não-invasivo e pode manter o bem-estar da colônia. Porém, padrões bioacústicos geram um volume considerável de dados. A utilização de classificadores incrementais com uma taxa de gravação diária pode manter a eficiência e reduzir este gargalo. Neste artigo, avaliamos de forma sistemática o desempenho de três classificadores incrementais: Hoeffding Tree, Random Forest e Naive Bayes. Destes três classificadores, o destaque foi o Naive Bayes com 10 janelas de 1 s /dia, tempo de resposta de somente 0,93 s e acurácia média de 97%.