Optimal Estimators for Astronomical Adaptive Optics

W. Wild
{"title":"Optimal Estimators for Astronomical Adaptive Optics","authors":"W. Wild","doi":"10.1364/adop.1996.athb.1","DOIUrl":null,"url":null,"abstract":"An adaptive optics system is a closed-loop servo control system that seeks to maximize PSF Strehl ratio performance by minimizing wavefront distortions. The wavefront is sampled over discrete subapertures and the local slopes are used to estimate the instantaneous wavefront shape which is then used to drive a deformable mirror with a discrete array of actuators. The temporal and spatial performance of the system is embodied in a single mathematical descriptor of the form Γ is a covariance matrix of the error between the atmosphere phase φ(ti+1) at time ti+1 and the deformable mirror figure, ϕdm(ti), derived from measurements at the previous time ti. Boldface quantities are vectors and matrices. The phase reflecting off the mirror is φ(ti+1) – ϕ(ti), presently assuming that ϕdm(ti)≈ϕ(ti), where ϕ(ti) is the estimated wavefront phase. Covariance matrices are a powerful mathematical tool because they contain information, in an ensemble average sense, about the sources of error and correlations present in the system. From Γ, the Strehl ratio, the MTF, time-delay, etc., can be computed. The Strehl ratio in the Marechal approximation is S ~ exp(–σ2), where σ2=Tr(Γ) /Na, for Na actuators within the pupil.","PeriodicalId":256393,"journal":{"name":"Adaptive Optics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/adop.1996.athb.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An adaptive optics system is a closed-loop servo control system that seeks to maximize PSF Strehl ratio performance by minimizing wavefront distortions. The wavefront is sampled over discrete subapertures and the local slopes are used to estimate the instantaneous wavefront shape which is then used to drive a deformable mirror with a discrete array of actuators. The temporal and spatial performance of the system is embodied in a single mathematical descriptor of the form Γ is a covariance matrix of the error between the atmosphere phase φ(ti+1) at time ti+1 and the deformable mirror figure, ϕdm(ti), derived from measurements at the previous time ti. Boldface quantities are vectors and matrices. The phase reflecting off the mirror is φ(ti+1) – ϕ(ti), presently assuming that ϕdm(ti)≈ϕ(ti), where ϕ(ti) is the estimated wavefront phase. Covariance matrices are a powerful mathematical tool because they contain information, in an ensemble average sense, about the sources of error and correlations present in the system. From Γ, the Strehl ratio, the MTF, time-delay, etc., can be computed. The Strehl ratio in the Marechal approximation is S ~ exp(–σ2), where σ2=Tr(Γ) /Na, for Na actuators within the pupil.
天文自适应光学的最优估计
自适应光学系统是一种闭环伺服控制系统,旨在通过最小化波前畸变来最大化PSF Strehl比性能。在离散子孔径上对波前进行采样,并利用局部斜率来估计瞬时波前形状,然后利用瞬时波前形状来驱动具有离散执行器阵列的可变形镜。系统的时间和空间性能体现在一个形式为Γ的单一数学描述符中,该描述符是在时间ti+1时的大气相φ(ti+1)与从前一个时间ti的测量得出的可变形镜像图(dm(ti))之间误差的协方差矩阵。黑体字的量是向量和矩阵。反射镜的相位是φ(ti+1) - φ(ti),目前假设ϕdm(ti)≈φ(ti),其中φ(ti)是估计的波前相位。协方差矩阵是一个强大的数学工具,因为它们包含了信息,从总体平均的意义上说,关于系统中存在的误差来源和相关性。从Γ,可以计算Strehl ratio, MTF, time-delay等。Marechal近似中的Strehl比为S ~ exp(-σ2),其中σ2=Tr(Γ) /Na。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信