Combined covariance model for non-coding RNA gene finding

Wenbo Jiang, K. Wiese
{"title":"Combined covariance model for non-coding RNA gene finding","authors":"Wenbo Jiang, K. Wiese","doi":"10.1109/CIBCB.2011.5948474","DOIUrl":null,"url":null,"abstract":"The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.
非编码RNA基因发现的联合协方差模型
利用协方差模型在基因组序列数据库中寻找非编码RNA基因成员已在许多研究中被证明是非常有效的。然而,它有一个明显的缺点,那就是非常大的计算负担。为了降低一个基因组序列中多个ncRNA基因家族的搜索复杂度,提出了一种组合协方差模型。使用分层聚类算法选择组合的协方差模型。本研究表明,当将少量原始协方差模型组合在一起时,组合的协方差模型可以找到所有原始ncRNA家族的成员,从而成功地减少了搜索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信