{"title":"Combined covariance model for non-coding RNA gene finding","authors":"Wenbo Jiang, K. Wiese","doi":"10.1109/CIBCB.2011.5948474","DOIUrl":null,"url":null,"abstract":"The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.