A Hierarchical Deep Neural Network for Fault Diagnosis on Tennessee-Eastman Process

Danfeng Xie, Limei Bai
{"title":"A Hierarchical Deep Neural Network for Fault Diagnosis on Tennessee-Eastman Process","authors":"Danfeng Xie, Limei Bai","doi":"10.1109/ICMLA.2015.208","DOIUrl":null,"url":null,"abstract":"This paper proposes a hierarchical deep neural network (HDNN) for diagnosing the faults on the Tennessee-Eastman process (TEP). The TEP process is a benchmark simulation model for evaluating process control and monitoring method. A supervisory deep neural network is trained to categorize the whole faults into a few groups. For each group of faults, a special deep neural network which is trained for the particular group is triggered for further diagnosis. The training and test data is generated from the Tennessee Eastman process simulation. The performance of the proposed method is evaluated and compared to single neural network (SNN) and duty-oriented hierarchical artificial neural network (DOHANN) methods. The results of experiment demonstrate that our method outperforms the SNN and DOHANN methods.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper proposes a hierarchical deep neural network (HDNN) for diagnosing the faults on the Tennessee-Eastman process (TEP). The TEP process is a benchmark simulation model for evaluating process control and monitoring method. A supervisory deep neural network is trained to categorize the whole faults into a few groups. For each group of faults, a special deep neural network which is trained for the particular group is triggered for further diagnosis. The training and test data is generated from the Tennessee Eastman process simulation. The performance of the proposed method is evaluated and compared to single neural network (SNN) and duty-oriented hierarchical artificial neural network (DOHANN) methods. The results of experiment demonstrate that our method outperforms the SNN and DOHANN methods.
基于层次深度神经网络的Tennessee-Eastman过程故障诊断
提出了一种用于田纳西-伊士曼过程(TEP)故障诊断的层次深度神经网络(HDNN)。TEP过程是评价过程控制和监控方法的基准仿真模型。训练监督深度神经网络,将整个故障划分为若干组。对于每一组故障,触发针对特定组的特殊深度神经网络进行进一步诊断。训练和测试数据来自田纳西州伊士曼过程仿真。对该方法的性能进行了评价,并与单神经网络(SNN)和面向任务的分层人工神经网络(DOHANN)方法进行了比较。实验结果表明,该方法优于SNN和DOHANN方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信