Personalized trip planning by integrating multimodal user-generated content

O. Patri, Ketan Singh, Pedro A. Szekely, A. Panangadan, V. Prasanna
{"title":"Personalized trip planning by integrating multimodal user-generated content","authors":"O. Patri, Ketan Singh, Pedro A. Szekely, A. Panangadan, V. Prasanna","doi":"10.1109/ICOSC.2015.7050837","DOIUrl":null,"url":null,"abstract":"We address the problem of record linkage and semantic integration in the context of large collections of user-generated content. These datasets are often large since it contains the contributions of millions of Internet users. We present an approach based on approximate string matching between the metadata associated with such data. The discovered linkages are stored in an ontology for answering queries on the integrated data sources. We demonstrate this approach in Photo Odyssey, an interactive web application which integrates multimodal content from image hosting and travel websites to create a user interface with a graphical trip plan and personalization options.We discuss several practical challenges faced in building such an application - integrating and mining large-scale multimodal user-generated data, resolving semantic heterogeneity, and machine learning for matching and ranking items. Photo Odyssey operates in an online manner without using any previously stored knowledge base. We also describe methods to compute relevance of images, remove bad data instances and duplicates, perform contextual filtering, and assign a category to uncatalogued images which enable an interactive application even on Big Data with real-world characteristics.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the problem of record linkage and semantic integration in the context of large collections of user-generated content. These datasets are often large since it contains the contributions of millions of Internet users. We present an approach based on approximate string matching between the metadata associated with such data. The discovered linkages are stored in an ontology for answering queries on the integrated data sources. We demonstrate this approach in Photo Odyssey, an interactive web application which integrates multimodal content from image hosting and travel websites to create a user interface with a graphical trip plan and personalization options.We discuss several practical challenges faced in building such an application - integrating and mining large-scale multimodal user-generated data, resolving semantic heterogeneity, and machine learning for matching and ranking items. Photo Odyssey operates in an online manner without using any previously stored knowledge base. We also describe methods to compute relevance of images, remove bad data instances and duplicates, perform contextual filtering, and assign a category to uncatalogued images which enable an interactive application even on Big Data with real-world characteristics.
通过整合多模式用户生成内容的个性化旅行规划
我们解决了在大量用户生成内容的背景下记录链接和语义集成的问题。这些数据集通常很大,因为它包含了数百万互联网用户的贡献。我们提出了一种基于与此类数据相关的元数据之间的近似字符串匹配的方法。发现的链接存储在本体中,用于回答对集成数据源的查询。我们在Photo Odyssey中演示了这种方法,这是一个交互式web应用程序,它集成了来自图像托管和旅游网站的多模式内容,创建了一个带有图形化旅行计划和个性化选项的用户界面。我们讨论了构建这样一个应用程序所面临的几个实际挑战——集成和挖掘大规模多模态用户生成的数据,解决语义异构,以及用于匹配和排序项目的机器学习。Photo Odyssey以在线方式运行,不使用任何先前存储的知识库。我们还描述了计算图像相关性的方法,删除坏数据实例和重复数据,执行上下文过滤,并为未分类的图像分配类别,这些方法甚至可以在具有现实世界特征的大数据上实现交互式应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信