Distinguishing Parkinson's disease from other syndromes causing tremor using automatic analysis of writing and drawing tasks

A. Tolonen, L. Cluitmans, E. Smits, M. Gils, N. Maurits, R. Zietsma
{"title":"Distinguishing Parkinson's disease from other syndromes causing tremor using automatic analysis of writing and drawing tasks","authors":"A. Tolonen, L. Cluitmans, E. Smits, M. Gils, N. Maurits, R. Zietsma","doi":"10.1109/BIBE.2015.7367690","DOIUrl":null,"url":null,"abstract":"An easily performed and objective test of patients fine motor skills would be valuable in the diagnosis of Parkinson's disease (PD). In this study we present a set of automatic methods for quantifying the motor symptoms of PD and show that these automatically extracted features can be used to distinguish PD from other movement disorders causing tremor, namely essential tremor (ET), functional tremor (FT) and enhanced physiological tremor (EPT). The classification accuracies (mean of sensitivity and specificity) for separating PD from the other tremor syndromes were 82.0 % for ET, 69.8 % for FT and 72.2 % for EPT.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

An easily performed and objective test of patients fine motor skills would be valuable in the diagnosis of Parkinson's disease (PD). In this study we present a set of automatic methods for quantifying the motor symptoms of PD and show that these automatically extracted features can be used to distinguish PD from other movement disorders causing tremor, namely essential tremor (ET), functional tremor (FT) and enhanced physiological tremor (EPT). The classification accuracies (mean of sensitivity and specificity) for separating PD from the other tremor syndromes were 82.0 % for ET, 69.8 % for FT and 72.2 % for EPT.
用书写和绘画任务的自动分析来区分帕金森病和其他引起震颤的综合征
一种简便、客观的患者精细运动技能测试对帕金森病(PD)的诊断有重要价值。在这项研究中,我们提出了一套用于量化PD运动症状的自动方法,并表明这些自动提取的特征可以用于区分PD与其他引起震颤的运动障碍,即原发性震颤(ET),功能性震颤(FT)和增强型生动性震颤(EPT)。将PD与其他震颤综合征区分开来的分类准确率(敏感性和特异性的平均值)ET为82.0%,FT为69.8%,EPT为72.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信