{"title":"First Workshop on Knowledge Base Construction, Mining and Reasoning","authors":"Xiang Ren, Craig A. Knoblock, W. Wang, Yu Su","doi":"10.1145/3159652.3160596","DOIUrl":null,"url":null,"abstract":"1. Motivation and Goals. e success of data mining and search technologies is largely aributed to the ecient and eective analysis of structured data. e construction of a well-structured, machine-actionable database from raw data sources is oen the premise of consequent applications. Meanwhile, the ability of mining and reasoning over such constructed databases is at the core of powering various downstream applications on web and mobile devices. Recently, we have witnessed a signicant amount of interests in building large-scale knowledge bases (KBs) from massive, unstructured data sources (e.g., Wikipedia-based methods such as DBpedia [9], YAGO [19], Wikidata [22], automated systems like Snowball [1], KnowItAll [5], NELL [4] and DeepDive [15], and opendomain approaches like Open IE [2] and Universal Schema [14]); as well as mining and reasoning over such knowledge bases to empower a wide variety of intelligent services, including question answering [6], recommender systems [3] and semantic search [8]. Automated construction, mining and reasoning of the knowledge bases have become possible as research advances in many related areas such as information extraction, natural language processing, data mining, search, machine learning, databases and data integration. However, there are still substantial scientic and engineering challenges in advancing and integrating such relevant methodologies. e goal of this proposed workshop is to gather together leading experts from industry and academia to share their visions about the eld, discuss latest research results, and exchange exciting ideas. With a focus on invited talks and position papers, the workshop aims to provide a vivid forum of discussion about knowledge base-related research. 2. Relevance to WSDM. Knowledge base construction, mining and reasoning is closely related to a wide variety of applications in WSDM, including web search, question answering, and recommender systems. Building a high-quality knowledge base from","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3160596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
1. Motivation and Goals. e success of data mining and search technologies is largely aributed to the ecient and eective analysis of structured data. e construction of a well-structured, machine-actionable database from raw data sources is oen the premise of consequent applications. Meanwhile, the ability of mining and reasoning over such constructed databases is at the core of powering various downstream applications on web and mobile devices. Recently, we have witnessed a signicant amount of interests in building large-scale knowledge bases (KBs) from massive, unstructured data sources (e.g., Wikipedia-based methods such as DBpedia [9], YAGO [19], Wikidata [22], automated systems like Snowball [1], KnowItAll [5], NELL [4] and DeepDive [15], and opendomain approaches like Open IE [2] and Universal Schema [14]); as well as mining and reasoning over such knowledge bases to empower a wide variety of intelligent services, including question answering [6], recommender systems [3] and semantic search [8]. Automated construction, mining and reasoning of the knowledge bases have become possible as research advances in many related areas such as information extraction, natural language processing, data mining, search, machine learning, databases and data integration. However, there are still substantial scientic and engineering challenges in advancing and integrating such relevant methodologies. e goal of this proposed workshop is to gather together leading experts from industry and academia to share their visions about the eld, discuss latest research results, and exchange exciting ideas. With a focus on invited talks and position papers, the workshop aims to provide a vivid forum of discussion about knowledge base-related research. 2. Relevance to WSDM. Knowledge base construction, mining and reasoning is closely related to a wide variety of applications in WSDM, including web search, question answering, and recommender systems. Building a high-quality knowledge base from