Hybrid piezoelectric-magnetic neurons: a proposal for energy-efficient machine learning

William Scott, Jonathan Jeffrey, Blake Heard, D. Nikonov, I. Young, S. Manipatruni, A. Naeemi, R. M. Iraei
{"title":"Hybrid piezoelectric-magnetic neurons: a proposal for energy-efficient machine learning","authors":"William Scott, Jonathan Jeffrey, Blake Heard, D. Nikonov, I. Young, S. Manipatruni, A. Naeemi, R. M. Iraei","doi":"10.1145/3190645.3190688","DOIUrl":null,"url":null,"abstract":"This paper proposes a spintronic neuron structure composed of a heterostructure of magnets and a piezoelectric with a magnetic tunnel junction (MTJ). The operation of the device is simulated using SPICE models. Simulation results illustrate that the energy dissipation of the proposed neuron compared to that of other spintronic neurons exhibits 70% improvement. Compared to CMOS neurons, the proposed neuron occupies a smaller footprint area and operates using less energy. Owing to its versatility and low-energy operation, the proposed neuron is a promising candidate to be adopted in artificial neural network (ANN) systems.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a spintronic neuron structure composed of a heterostructure of magnets and a piezoelectric with a magnetic tunnel junction (MTJ). The operation of the device is simulated using SPICE models. Simulation results illustrate that the energy dissipation of the proposed neuron compared to that of other spintronic neurons exhibits 70% improvement. Compared to CMOS neurons, the proposed neuron occupies a smaller footprint area and operates using less energy. Owing to its versatility and low-energy operation, the proposed neuron is a promising candidate to be adopted in artificial neural network (ANN) systems.
混合压电-磁神经元:节能机器学习的建议
提出了一种由磁体异质结构和带磁隧道结的压电体(MTJ)组成的自旋电子神经元结构。利用SPICE模型对装置的运行进行了仿真。仿真结果表明,该自旋电子神经元的能量耗散比其他自旋电子神经元的能量耗散提高了70%。与CMOS神经元相比,所提出的神经元占用更小的占地面积,使用更少的能量。由于其通用性和低能量运算,该神经元是人工神经网络(ANN)系统中很有希望采用的候选神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信